K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

Áp dụng BĐT C-S:

\(P=\frac{2}{\sqrt{11}}\left[\sqrt{\left[\left(a+\frac{1}{2}\right)^2+\frac{7}{4}\right]\left(1+\frac{7}{4}\right)}+\sqrt{\left[\left(b+\frac{1}{2}\right)^2+\frac{7}{4}\right]\left(1+\frac{7}{4}\right)}\right]\)

\(\ge\frac{2}{\sqrt{11}}\left[\left(a+\frac{9}{4}\right)+\left(b+\frac{9}{4}\right)\right]=\sqrt{11}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

31 tháng 1 2020

tth : dấu " \(\ge\)" ?

15 tháng 10 2019

\(a+b+c\le\sqrt{3}\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=1\)

Thay vào M ta có: \(M\le\frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét: \(\left(\frac{a}{a+b}+\frac{a}{a+c}\right)^2\ge\frac{4a^2}{\left(a+b\right)\left(a+c\right)}\Leftrightarrow\frac{a}{a+b}+\frac{a}{a+c}\ge\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Tương tự rồi cộng vế vs vế ta được: \(M\le\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}}{2}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c = \(\frac{\sqrt{3}}{3}\)

17 tháng 10 2019

cosplay de chuyen thai nguyen 17-18

20 tháng 4 2017

Hehe

1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b

=> a^2- 2ab+ b^2>= 0 với mọi a,b

=> a^2+2ab+ b^2>= 4ab với a,b>0

=> (a+b)^2> 4ab với a,b>0

=> a+b>= \(2\sqrt{ab}\)

Dấu = xảy ra <=> a-b=0 <=> a= b

Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D

2) Chắc thiếu đề :D

9 tháng 5 2021

\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)

\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)

\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)

\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)

\(\Rightarrow p\le2\sqrt{2}\)

Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
1 tháng 8 2021

\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Lại có:

\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)

\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)

Do đó:

\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)

\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)

\(Q^2\ge4\left(a+b+c\right)\ge4\)

\(\Rightarrow Q\ge2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

1 tháng 8 2021

hàng đầu tiên tìm MaxQ áp dụng bđt nào thế thầy?