chứng minh : A = \(\frac{1}{10}\)[ (7^2008)^2010 - ( 3^92 ) ^ 94 là 1 STN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn lên youtube tìm phương pháp tìm số tận cùng nhé 2 cái này cug có tận cùng là 1 => vế trong ngoặc có tận cùng là 0
luôn chia hết cho 10 nhé
ta có:72 đồng dư với 9(mod10)
suy ra:(72)1004 đồng dư với 9 (mod10) suy ra (72008)2010 đồng dư với 9(mod10)
32 đòng dư với 9(mod 10) suy ra (32)46 đồng dư với 9 (mod10) suy ra(392)94 đồng dư với 9 (mod10)
suy ra (72008)2010 -(392)94 đong dư với 0 (mod 10) hay chúng chia hết cho 10
suy ra A là số tự nhiên
Ta thấy: a^n chia m dư 1 => a^k.n chia m dư 1 (k thuộc N)
Ta thấy: 2008 chia hết cho 4
=> 2008^2010 chia hết cho 4 => 2008^2010 = 4.f (f thuộc N)
Mà 7^4 chia 10 dư 1 => 7^4.f chia 10 dư 1
=> 7^2008^2010 chia 10 dư 1
Tương tự thì 3^92^94 chia 10 dư 1
=> 7^2008^2010 - 3^92^94 chia hết cho 10
=> 1/10.(7^2008^2010 - 3^92^94) là số tự nhiên (đpcm)
ta có:72 đồng dư với 9(mod10)
suy ra:(72)1004 đồng dư với 9 (mod10) suy ra (72008)2010 đồng dư với 9(mod10)
32 đòng dư với 9(mod 10) suy ra (32)46 đồng dư với 9 (mod10) suy ra(392)94 đồng dư với 9 (mod10)
suy ra (72008)2010 -(392)94 đong dư với 0 (mod 10) hay chúng chia hết cho 10
suy ra A là số tự nhiên
Hướng chứng mính:Chứng minh \(7^{2004^{2006}}-3^{92^{94}}⋮10\)
Cách chứng minh:Ta có:\(2004⋮4\Rightarrow2004^{2006}⋮4\).Đặt \(2004^{2006}=4k\) (1)
Lại có:\(92⋮4\Rightarrow92^{94}⋮4\).Đặt \(92^{94}=4m\) (2)
Từ (1) và (2) ta có:74k-34m=(74)k-(34)m=2401k-81m=.......................1-.......................1=.........................0 chia hết cho 10
Vậy A là STN
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Anh Dũng - Toán lớp 6 - Học toán với OnlineMath
7^2 đồng dư với -1 (mod 10)
7^2 tất cả mũ 1002^2006 đồng dư với (-1)^2006 =1(mod 10)
7^2004^2006đồng dư với 1(mod 10)
tương tự cm được 3^92^94 đồng dư với 1(mod10)
ta có 7^2004^2006 đồng dư vói 1(mod10)
3^92^94đồng dư vói 1(mod10)
suy ra 7^2004^2006-3^92^94 đồng dư với 1-1 =0(mod 10)
suy ra 7^2004^2006-3^92^94chia hết cho 10
suy ra 7^2004^2006-3^92^94 = 10k(k thuộc \(ℕ^∗\))
suy ra A=1/10x10k=k
suy ra a là số tn
\(\left(7^{2008}\right)^{2010}=\left(7^2\right)^{1004.2010}=49^{1004.2010}=\left(...9\right)\)
\(\left(3^{92}\right)^{94}=\left(3^2\right)^{46.94}=\left(...9\right)\)
=> B=\(\left(7^{2008}\right)^{2010}-\left(3^{92}\right)^{94}=\left(...9\right)-\left(...9\right)=\left(...0\right)\)
Suy ra B chia hết cho 10
Vậy A=B/10 là số tự nhiên.
ta có:72 đồng dư với 9(mod10)
suy ra:(72)1004 đồng dư với 9 (mod10) suy ra (72008)2010 đồng dư với 9(mod10)
32 đòng dư với 9(mod 10) suy ra (32)46 đồng dư với 9 (mod10) suy ra(392)94 đồng dư với 9 (mod10)
suy ra (72008)2010 -(392)94 đong dư với 0 (mod 10) hay chúng chia hết cho 10
suy ra A là số tự nhiên