K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2020

Giải 
(x^2 + 3x)^2 = (8x+4)(x^2+x-1)

x^4 + 6x^3 + 9x^2 = 8x^3 + 12x^2 -4x  -4.

x^4 - 2x^3 - 3x^2  +4x +4 = 0

Đặt t = x^2 ta có phương trình:

x^2 - 2x - 3 + 4/x + 4/x^2 = 0

(x^2 + 4/x^2) -2 (x -2/x) - 3 =0

Đặt k = x - 2/x và thay vào phương trình ta được:

(k^2 -4) - 2k - 3 =0

k^2 - 2k - 7 = 0

Giải phương trình tìm được 2 nghiệm x= 1+2\(\sqrt{2}\)và x = 1- 2\(\sqrt{2}\).

Nhanh nhất và dễ hiểu nhất đấy nhé!

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

13 tháng 3 2018

\(x^4-2x^3+3x^2-2x+1=0\)

Chia cả hai vé cho \(x^2\)

\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt x+1/x = a, ta có:

\(a^2-2a+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)

Do đó phương trình vô nghiệm

30 tháng 1 2018

a) 2x2-4x-x+2=0

=> 2x(x-2)-(x-2)=0

=> (2x-1)(x-2)=0

=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

b) 3x2-12x+5x-20=0

=> 3x(x-4)+5.(x-4)=0

=> (x-4)(3x+5)=0

=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)

c)x3+2x2-x2-2x+2x+4=0

=> x2(x+2)-x(x+2)+2(x+2)=0

=>(x2-x+2)(x+2)=0

=> x=-2( vi x2-x+2>0)

d) x3-x2-4x2+4x+4x-4=0

=> x2(x-1)-4x(x-1)+4(x-1)=0

=>(x-1)(x2-4x+4)=0

=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

30 tháng 1 2018

2x2-5x+2=0

⇔2x2-x-4x+2=0

⇔x(2x-1)-2(2x-1)=0

⇔(x-2)(2x-1)=0

\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)

sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)

x3+x2+4=0

⇔x3+2x2-x2-2x+2x+4=0

⇔(x3+2x2)-(x2+2x)+(2x+4)=0

⇔x2(x+2)-x(x+2)+2(x+2)=0

⇔(x+2)(x2-x+2)=0

⇔x+2=0 và x2-x+2=0

⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)

vậy S={-2}

21 tháng 1 2018

a) [x(x+1].[(x-1)(x+2)]=24

(x2+x)(x2+x+2)=24

Dat x2+x=a , ta dc: a(a+2)=24

=> a2+2a-24=0

=> (a-4)(a+6)=0

=> a=4 hoac a=-6

Thay vao roi tu tim x nha

b)

24 tháng 1 2018

thanks