K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

a) \(A=\frac{x-3}{4x-8}\left(ĐKXĐ:x\ne2\right).\)

Ta có:

\(\left|2x-1\right|=3\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4:2\\x=\left(-2\right):2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(KTM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

+ Thay \(x=-1\) vào biểu thức A ta được:

\(A=\frac{\left(-1\right)-3}{4.\left(-1\right)-8}\)

\(\Rightarrow A=\frac{-4}{\left(-4\right)-8}\)

\(\Rightarrow A=\frac{-4}{-12}\)

\(\Rightarrow A=\frac{1}{3}.\)

Vậy giá trị của biểu thức A tại \(x=-1\) là: \(\frac{1}{3}.\)

b) Rút gọn B:

\(B=\frac{3}{x+2}-\frac{x}{x-2}+\frac{x^2+3}{x^2-4}\)

\(B=\frac{3}{x+2}-\frac{x}{x-2}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)

\(B=\frac{3.\left(x-2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)

\(B=\frac{3x-6}{\left(x-2\right).\left(x+2\right)}-\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)

\(B=\frac{3x-6}{\left(x-2\right).\left(x+2\right)}+\frac{-\left(x^2+2x\right)}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)

\(B=\frac{3x-6-x^2-2x+x^2+3}{\left(x-2\right).\left(x+2\right)}\)

\(B=\frac{x-3}{\left(x-2\right).\left(x+2\right)}.\)

Chúc bạn học tốt!

27 tháng 6 2018

\(a,\)

\(A=\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{4x^2-4x+16}{x^2-4}\right):\frac{16}{x+2}.\frac{x^2+3x+2}{x^2+x+1}\)\(ĐKXĐ:x\ne\pm2\)

\(A=[\frac{4x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right).4\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x+2\right)}]:\frac{16}{x+2}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=[\frac{4x}{x+2}-\frac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}].\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}.\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{16\left(x+2\right)}{\left(x+2\right)^2.16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{-\left(x+1\right)}{x^2+x+1}\)

\(B=\frac{x^2+x-2}{x^3-1}\)\(ĐKXĐ:x\ne1\)

\(B=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(B=\frac{x+2}{x^2+x+1}\)

\(b,\)

Ta có:

\(A+B=\frac{-\left(x+1\right)}{x^2+x+1}+\frac{x+2}{x^2+x+1}\)

\(=\frac{-x-1+x+2}{x^2+x+1}\)

\(=\frac{1}{x^2+x+1}\)

\(\Rightarrow A+B=\frac{1}{x^2+x+1}=\frac{1}{x^2+2.x.\left(\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{1}{\left(x+\frac{1}{2}\right)^2}+\frac{3}{4}\)

Vì:\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}\)

\(\Rightarrow A+B\le\frac{4}{3}\)

\(\Rightarrow GTLN\)của \(A+B=\frac{4}{3}\Leftrightarrow x+\frac{1}{2}=0\)

                                                        \(\Leftrightarrow x=\frac{-1}{2}\left(TMĐK\right)\)

Vậy........

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(

24 tháng 11 2019

\(a.=\frac{4x\left(x^2-2x+1\right)}{x^2-1x-5x+5}\)

\(=\frac{4x\left(x-1\right)^2}{x\left(x-1\right)-5\left(x-1\right)}\)

\(=\frac{4x\left(x-1\right)^2}{\left(x-5\right)\left(x-1\right)}\)

\(=\frac{4x\left(x-1\right)}{x-5}\)

24 tháng 11 2019

b) \(\frac{4x^3-64x}{x^2-7x+12}\)

\(=\frac{4x\left(x^2-16\right)}{x^2-3x-4x+12}\)

\(=\frac{4x\left(x+4\right)\left(x-4\right)}{x\left(x-3\right)-4\left(x-3\right)}\)

\(=\frac{4x\left(x+4\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)

\(=\frac{4x\left(x+4\right)}{x-3}=\frac{4x^2+16x}{x-3}\)

c) \(\frac{x^2-6x+8}{x^3-8}\)

\(=\frac{x^2-2x-4x+8}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{x\left(x-2\right)-4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{x-4}{x^2+2x+4}\)

31 tháng 12 2019

a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7

b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)

c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)

\(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)

d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)

= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)

= -2(x2 - 2x + 1  + x2 - 1 + x2 + 2x + 1) + 6x2 - 6

= -2(3x2 + 1) + 6x2 - 6

= -6x2 - 2 + 6x2  - 6

= -8

e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2

= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2

= (2x + 7 - 2x + 8)2

= 152 = 225