K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

\(4.\left(x+1\right)^2-9.\left(x-1\right)^2=0\)

\(\Leftrightarrow4.\left(x^2+2x+1\right)-9.\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow4x^2+8x+4-9x^2+18x-9=0\)

\(\Leftrightarrow\left(4x^2+8x+4\right)-\left(9x^2-18x+9\right)=0\)

\(\Leftrightarrow\left(2x+2\right)^2-\left(3x-3\right)^2=0\)

\(\Leftrightarrow\left[2x+2-\left(3x-3\right)\right].\left[2x+2+\left(3x-3\right)\right]=0\)

\(\Leftrightarrow\left(2x+2-3x+3\right).\left(2x+2+3x-3\right)=0\)

\(\Leftrightarrow\left(5-x\right).\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{5}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{5;\frac{1}{5}\right\}.\)

Chúc bạn học tốt!

23 tháng 1 2020

\(4\left(x+1\right)^2-9\left(x-1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+2x+1\right)-9\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow4x^2+8x+4-9x^2-18x-9=0\)

\(\Leftrightarrow-5x^2-10x-5=0\)

\(\Leftrightarrow-5\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow-5\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy S = {1}

7 tháng 6 2020

Ta có : \(\left(x-1\right)^4-8\left(x-1\right)^2-9=0\)

- Đặt \(\left(x-1\right)^2=a\) ta được phương trình : \(a^2-8a-9=0\)

Ta có : \(a-b+c=1-\left(-8\right)+9=0\)

Nên phương trình có 2 nghiệm \(a_1=-1,a_2=-\frac{c}{a}=9\)

=> \(\left[{}\begin{matrix}\left(x-1\right)^2=-1\left(VL\right)\\\left(x-1\right)^2=9\end{matrix}\right.\)

=> \(\left(x-1\right)^2=9\)

=> \(\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Vậy .....

26 tháng 2 2018

\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)+9=0\)

\(\Leftrightarrow\left(x^2-3x+4\right)\left(x^2+3x-10\right)+9=0\)

\(\Leftrightarrow\left(x^2+3x-7+3\right)\left(x^2+3x-7-3\right)+9=0\)

\(x^2+3x-7=0\)

\(x^2+3x=7\)

\(\Rightarrow x^2+2x.\frac{3}{2}+\frac{9}{4}=7+\frac{9}{4}\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2=\frac{37}{4}\)

\(\Rightarrow x+\frac{3}{2}=\pm\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}-\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}+\sqrt{\frac{37}{4}}\)

Vậy \(S=\left\{\frac{-3}{2}-\sqrt{\frac{37}{4}};\frac{-3}{2}+\sqrt{\frac{37}{4}}\right\}\)

15 tháng 5 2021

`1)x^4 -10x^3 +26x^2 -10x+1=0`
`x=0=>VT=1=>x=0(l)`
Chia 2 vế cho `x^2>0` ta có
`x^2-10x+26-10/x+1/x^2=0`
`=>x^2+1/x^2+26-10(x+1/x)=0`
`=>(x+1/x)^2-10(x+1/x)+24=0`
Đặt `a=x+1/x`
`pt<=>a^2-10a+24=0`
`<=>` $\left[ \begin{array}{l}a=4\\a=6\end{array} \right.$
`a=4<=>x+1/x=4<=>x^2-4x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt3+2\\x=-\sqrt3+2\end{array} \right.$
`a=6<=>x+1/x=6<=>x^2-6x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt8+3\\x=-\sqrt8+3\end{array} \right.$
Vậy `S={\sqrt3+2,-\sqrt3+2,\sqrt8+3,-\sqrt8+3}`

15 tháng 5 2021

2)Do hệ số chẵn bằng=hệ số lẻ
`=>x=-1`
`pt<=>x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0`
`<=>(x+1)(x^3+4x^2+6x+9)=0`
`<=>(x+1)(x^3+3x^2+x^2+6x+9)=0`
`<=>(x+1)[x^2(x+3)+(x+3)^2]=0`
`<=>(x+1)(x+3)(x^2+x+3)=0`
Do `x^2+x+3=(x+1/2)^2+11/4>0`
`=>` $\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.$
Vậy `S={-1,-3}`

11 tháng 2 2018

<=> [3(x-1)]2- [2(2x+1)]2= 0

<=> (3x-3)2 - (4x+2)2= 0

<=> (3x-3-4x-2)(3x-3+4x+2) = 0

<=> (-x-5)(7x-1) = 0

=> -x-5= 0 hoặc 7x-1= 0

=> x= -5 => x = 1/7

\(9\left(x-1\right)^2-4\left(2x+1\right)^2=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(4x^2+4x+1\right)=0\)

\(\Leftrightarrow9x^2-18x+9-16x^2-16x-4=0\)

\(\Leftrightarrow-7x^2-34x+5=0\)

\(\Leftrightarrow-7x^2+35x-x+5=0\)

\(\Leftrightarrow-7x\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(-7x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\-7x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1}{7}\end{matrix}\right.\)

20 tháng 7 2023

1)

`2(x-1)^2 =32`

`<=>(x-1)^2 =18`

`<=>x-1=9` hoặc `x-1=-9`

`<=>x=10` hoặc `x=-8`

2)

`(x+1)(81x^2 -9)=0`

`<=>(x+1)(9x-3)(9x+3)=0`

`<=>x+1=0` hoặc `9x-3=0` hoặc `9x+3=0`

`<=>x=-1` hoặc `x=1/3` hoặc `x=-1/3`

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

2 tháng 7 2021

`x^2 + 2(m-1)x + m^2 = 0`

Thay `m=0` vào pt và giải ta được :

`x^2 - 6x + 16 = 0`

Vì `x^2 - 6x + 16 > 0` với mọi `x`

`=>` vô nghiệm 

Vậy `S = RR`

Thay `m=-4` vào pt và giải ta được :

`x^2 + 10x + 16 = 0`

`\Delta = 10^2 - 4*1*16 = 36 > 0`

`=> \sqrt{\Delta} = 6`

`=>` Phương trình có 2 nghiệm phân biệt :

`x_1 = (-10+6)/(2*1) = -2`

`x_2 = (-10-6)/(2*1) = -8`

Vậy `S = {-2,-8}`

 

a: Thay m=1 vào pt, ta được:

\(x^2-1=0\)

=>(x-1)(x+1)=0

=>x=1 hoặc x=-1

b: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4\left(m^2-m+1\right)\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(2\left(x_1+x_2\right)-3x_1x_2+9=0\)

\(\Leftrightarrow2\cdot\left[-2\left(m-1\right)\right]-3\cdot\left(-m\right)+9=0\)

\(\Leftrightarrow-4\left(m-1\right)+3m+9=0\)

=>-4m+4+3m+9=0

=>13-m=0

hay m=13

6 tháng 2 2022

a, Thay m = 1 ta được 

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)

\(-4\left(m-1\right)+3m+9=0\Leftrightarrow-m+13=0\Leftrightarrow m=13\)

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)