a, Tìm 20 chữ số tận cùng của 100!
b, Tìm hai số a và b (a<b)biết WCLN (a,b) = 10 và BCNN(A,B) =900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm hai số tận cùng của 2100.
210 = 1024, bình phương của hai số có tận cùng bằng 24 thì tận cùng bằng 76, các số tận cùng bằng 76 nâng lên lũy thừa nào( khác 0) cũng tận cùng bằng 76. Do đó:
2100 = (210)10= 1024 = (10242)5 = (…76)5 = …76.
Vậy hai chữ sè tận cùng của 2100 là 76.
b] Tìm hai chữ số tận cùng của 71991.
Ta thấy: 74 = 2401, số có tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01. Do đó: 71991 = 71988. 73= (74)497. 343 = (…01)497. 343 = (…01) x 343 =…43
Vậy 71991 có hai số tận cùng là 43.
Đúng nhé
2100=(220)5=(...76)5=(...76)
7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43
5^1992=(5^4)^498=625^498=0625^498=(...0625)
Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7
Mk làm bằng mẹo đó nha!
1a) 4^21=(4^2)^10.4=(....6)^10.4=(......6).4=(.......4)
b) 3^100=(3^4)^25=(.....1)^25=(.....1)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
câu b
https://olm.vn/hoi-dap/detail/6196374176.html