Giải bất phương trình
\(\sqrt[3]{x+24}\sqrt{12-x^2}\le6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
\(\sqrt{8+2x-x^2}\le6-3x\)
⇒ \(\left\{{}\begin{matrix}-x^2+2x+8\ge0\\6-3x\ge0\\-x^2+2x+8\le\left(6-3x\right)^2\end{matrix}\right.\)
⇌ \(\left\{{}\begin{matrix}-2\le x\le4\\x\le2\\-x^2+2x+8\le36-36x+9x^2\end{matrix}\right.\)
⇌ \(\left\{{}\begin{matrix}-2\le x\le4\\x\le2\\-10x^2+38x-28\le0\end{matrix}\right.\)
⇌ \(\left\{{}\begin{matrix}-2< x< 4\\x\le2\\\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{5}\end{matrix}\right.\end{matrix}\right.\)
⇌ \(-2\le x\le1\)
Vậy \(S=\left[-2;1\right]\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
ĐKXĐ: \(-\dfrac{3}{2}\le x\le4\)
BPT tương đương:
\(6+2\sqrt{\left(x+2\right)\left(4-x\right)}>2x+3\)
\(\Leftrightarrow2\sqrt{-x^2+2x+8}>2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\4\left(-x^2+2x+8\right)>4x^2-12x+9\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\8x^2-20x-23< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{2}\le x< \dfrac{5+\sqrt{71}}{4}\)
1:
ĐKXĐ: x<>3
\(\dfrac{x-1}{x-3}>1\)
=>\(\dfrac{x-1-\left(x-3\right)}{x-3}>0\)
=>\(\dfrac{x-1-x+3}{x-3}>0\)
=>\(\dfrac{2}{x-3}>0\)
=>x-3>0
=>x>3
2: ĐKXĐ: \(\left[{}\begin{matrix}x>=3\\x< =-4\end{matrix}\right.\)
\(\sqrt{x^2+x-12}< 8-x\)
=>\(\left\{{}\begin{matrix}8-x>=0\\x^2+x-12< \left(8-x\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\x^2+x-12-x^2+16x-64< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\17x-76< 0\end{matrix}\right.\)
=>\(x< \dfrac{76}{17}\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}3< =x< \dfrac{76}{17}\\x< =-4\end{matrix}\right.\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}-1\right)+\left(\sqrt{2x+4}-2\right)< -x\sqrt{2}\)
=>\(\dfrac{x+1-1}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{2x+4-4}{\sqrt{2x+4}+2}+x\sqrt{2}< 0\)
=>x<0
=>-1<x<0
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le3\\x\ne1\end{matrix}\right.\)
\(\dfrac{\sqrt{x+1}\left(\sqrt{x+1}+\sqrt{3-x}\right)}{2\left(x-1\right)}>x-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x+1+\sqrt{-x^2+2x+3}}{x-1}>2x-1\)
- TH1: Với \(x>1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}>\left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}>2x^2-4x\)
Đặt \(\sqrt{-x^2+2x+3}=t\ge0\Rightarrow2x^2-4x=-2t^2+6\)
BPt trở thành: \(t>-2t^2+6\Leftrightarrow2t^2+t-6>0\)
\(\Rightarrow t>\dfrac{3}{2}\Rightarrow-x^2+2x+3>\dfrac{9}{4}\Rightarrow1< x< \dfrac{2+\sqrt{7}}{2}\)
TH2: với \(x< 1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}< \left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}< 2x^2-4x\)
Tương tự như trên, đặt \(t=\sqrt{-x^2+2x+3}\ge0\) ta được \(0\le t< \dfrac{3}{2}\)
\(\Rightarrow-x^2+2x+3< \dfrac{9}{4}\) \(\Rightarrow-1\le x< \dfrac{2-\sqrt{7}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}-1\le x< \dfrac{2-\sqrt{7}}{2}\\1< x< \dfrac{2+\sqrt{7}}{2}\end{matrix}\right.\)