\(|x|+|x+1|+|x+2|+...+|x+2019|\)
tìm GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét Ix-1I + Ix-5I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-1|+|x-5|\ge|x-1-x+5|=4\)
Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0
+) Xét Ix-2I + Ix-4I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-2|+|x-4|\ge|x-2-x+4|=2\)
Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0
+) Xét Ix-3I
Vì Ix-3I\(\ge\)0
Dấu "=' xảy ra khi x-3=0 hay x=3
Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025
Dấu"=" xảy ra khi x=3
Vậy gtnn của A là 2025 tại x=3
khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
\(A=2018x^2+\left(x-1\right)^2\)
Suy ra A>=1 nên A(min)=1 \(\Leftrightarrow\)x=0
TXĐ: \(D=\left(-1;1\right)\)
\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)
\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)
Đặt \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)
=> \(\sqrt{1-x^2}.A=2018x+2020\)
=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)
<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)
pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)
<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)
<=> \(A^2-8076\ge0\)
<=> \(A\ge\sqrt{8076}\)
"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)
Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại \(x=-\frac{1009}{1010}\)