K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)

\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)

\(=\frac{35}{9}\)

Đẳng thức xảy ra tại x=2;y=1

3 tháng 8 2020

Đặt x = 2t 

đưa bài toán về dạng: 

\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)

\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)

\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)

\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)

Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2

7 tháng 5 2020

đề không sai đâu nếu đề như cậu thì tớ đã lm đc r

\n
NV
7 tháng 5 2020

Bạn ko hiểu về BĐT

\n\n

Để chứng minh 1 đề bài sai, bạn chỉ cần lấy 1 phản ví dụ là đủ

\n
NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+4\geq 4x; y^2+1\geq 2y$

$\Rightarrow P=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}$

$\geq 4x+2y+\frac{1}{x}+\frac{1}{x+y}-5$

$=[\frac{x+y}{9}+\frac{1}{x+y}]+[\frac{x}{4}+\frac{1}{x}]+\frac{131}{36}x+\frac{17}{9}y-5$

$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}(x+y)+\frac{7}{4}x-5$

$\geq \frac{2}{3}+1+\frac{17}{9}.3+\frac{7}{4}.2-5=\frac{35}{6}$

Vậy $P_{\min}=\frac{35}{6}$ khi $x=2; y=1$

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)