K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x-3<0

(=)x<3

vậy x thuộc{ x/x<3}

#Học-tốt

x.(x-3)<0

=>x-3<0:3

=>x-3<0

=>x<0+3

=>x<3

=>x\(\in\){2;1;0;-1;-2;.......................}

 Chúc bn học tốt

26 tháng 5 2021

\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)

Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)

ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)

Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)

MH
15 tháng 8

Ta cần tìm các cặp số nguyên \(\left(\right. x , y \left.\right) \in \mathbb{Z}\) sao cho:

\(x^{2} + y^{2} - 2 x - 4 y < - 3\)


Bước 1: Quy về dạng bình phương hoàn chỉnh

Ta nhóm các hạng tử theo biến:

\(x^{2} - 2 x + y^{2} - 4 y < - 3\)

Bây giờ, hoàn thành bình phương:

  • \(x^{2} - 2 x = \left(\right. x - 1 \left.\right)^{2} - 1\)
  • \(y^{2} - 4 y = \left(\right. y - 2 \left.\right)^{2} - 4\)

Thay vào:

\(\left(\right. x - 1 \left.\right)^{2} - 1 + \left(\right. y - 2 \left.\right)^{2} - 4 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} - 5 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)


Bước 2: Giải bất phương trình

Ta cần tìm các số nguyên \(\left(\right. x , y \left.\right)\) sao cho:

\(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)

Vì đây là tổng bình phương nên:

  • \(\left(\right. x - 1 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
  • \(\left(\right. y - 2 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)

Và tổng < 2.

Xét từng khả năng:

  1. \(\left(\right. x - 1 \left.\right)^{2} = 0 \Rightarrow x = 1\)
    • \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 0 → TM
    • \(\left(\right. y - 2 \left.\right)^{2} = 1 \Rightarrow y = 1 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 3\) → Tổng = 1 → TM
  2. \(\left(\right. x - 1 \left.\right)^{2} = 1 \Rightarrow x = 0 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 2\)
    • \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 1 → TM

Không có trường hợp nào với \(\left(\right. x - 1 \left.\right)^{2} = 1\)\(\left(\right. y - 2 \left.\right)^{2} = 1\) vì tổng = 2 → không thỏa.


Kết luận:

Tập nghiệm nguyên là các cặp:

\(\left(\right. x , y \left.\right) \in \left{\right. \left(\right. 1 , 2 \left.\right) , \left(\right. 1 , 1 \left.\right) , \left(\right. 1 , 3 \left.\right) , \left(\right. 0 , 2 \left.\right) , \left(\right. 2 , 2 \left.\right) \left.\right}\) tham khảo

\(x^2+y^2-2x-4y<-3\)

=>\(x^2-2x+1+y^2-4y+4<-3+1+4\)

=>\(\left(x-1\right)^2+\left(y-2\right)^2<2\)

mà x,y nguyên

nên \(\left\lbrack\left(x-1\right)^2;\left(y-2\right)^2\right\rbrack\in\left\lbrace\left(1;0\right);\left(0;1\right);\left(0;0\right)\right\rbrace\)

=>(x-1;y-2)∈{(1;0);(-1;0);(0;1);(0;-1);(0;0)}

=>(x;y)∈{(2;2);(0;2);(1;3);(1;1);(1;2)}

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1

12 tháng 8 2017

\(\left(x+3\right)\left(x-2\right)< 0\)

Mà \(\left(x+3\right)\left(x-2\right)< 0\Rightarrow\)(x+3) và (x-2) đối dấu nhau .

\(\left(x+3\right)>0\Rightarrow x=-3\)

\(\left(x-2\right)>0\Rightarrow x=2\)

Mà x là số nguyên từ -3 đến 2 .

Vậy x = -2 ; -1 ; 0 ; 1. 

                      Đ/S : ....

12 tháng 8 2017

(x+3)(x-2) <0

=>x+3<0

   x-2<0

=> x=-3

    x= 2

Vậy X\(\varepsilon\){ -3 ; 2}