Tìm x thuộc Z. Thỏa mãn: x . (x - 3) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)
Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)
ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)
Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)

Ta cần tìm các cặp số nguyên \(\left(\right. x , y \left.\right) \in \mathbb{Z}\) sao cho:
\(x^{2} + y^{2} - 2 x - 4 y < - 3\)
Bước 1: Quy về dạng bình phương hoàn chỉnh
Ta nhóm các hạng tử theo biến:
\(x^{2} - 2 x + y^{2} - 4 y < - 3\)
Bây giờ, hoàn thành bình phương:
- \(x^{2} - 2 x = \left(\right. x - 1 \left.\right)^{2} - 1\)
- \(y^{2} - 4 y = \left(\right. y - 2 \left.\right)^{2} - 4\)
Thay vào:
\(\left(\right. x - 1 \left.\right)^{2} - 1 + \left(\right. y - 2 \left.\right)^{2} - 4 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} - 5 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)
Bước 2: Giải bất phương trình
Ta cần tìm các số nguyên \(\left(\right. x , y \left.\right)\) sao cho:
\(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)
Vì đây là tổng bình phương nên:
- \(\left(\right. x - 1 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
- \(\left(\right. y - 2 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
Và tổng < 2.
Xét từng khả năng:
- \(\left(\right. x - 1 \left.\right)^{2} = 0 \Rightarrow x = 1\)
- \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 0 → TM
- \(\left(\right. y - 2 \left.\right)^{2} = 1 \Rightarrow y = 1 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 3\) → Tổng = 1 → TM
- \(\left(\right. x - 1 \left.\right)^{2} = 1 \Rightarrow x = 0 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 2\)
- \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 1 → TM
Không có trường hợp nào với \(\left(\right. x - 1 \left.\right)^{2} = 1\) và \(\left(\right. y - 2 \left.\right)^{2} = 1\) vì tổng = 2 → không thỏa.
Kết luận:
Tập nghiệm nguyên là các cặp:
\(\left(\right. x , y \left.\right) \in \left{\right. \left(\right. 1 , 2 \left.\right) , \left(\right. 1 , 1 \left.\right) , \left(\right. 1 , 3 \left.\right) , \left(\right. 0 , 2 \left.\right) , \left(\right. 2 , 2 \left.\right) \left.\right}\) tham khảo
\(x^2+y^2-2x-4y<-3\)
=>\(x^2-2x+1+y^2-4y+4<-3+1+4\)
=>\(\left(x-1\right)^2+\left(y-2\right)^2<2\)
mà x,y nguyên
nên \(\left\lbrack\left(x-1\right)^2;\left(y-2\right)^2\right\rbrack\in\left\lbrace\left(1;0\right);\left(0;1\right);\left(0;0\right)\right\rbrace\)
=>(x-1;y-2)∈{(1;0);(-1;0);(0;1);(0;-1);(0;0)}
=>(x;y)∈{(2;2);(0;2);(1;3);(1;1);(1;2)}

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:
\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)
Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)
Và: \(z^3+1+1\ge3z\left(3\right)\)
Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)
\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)
Dấu "=" xảy ra khi x=y=z=1

\(\left(x+3\right)\left(x-2\right)< 0\)
Mà \(\left(x+3\right)\left(x-2\right)< 0\Rightarrow\)(x+3) và (x-2) đối dấu nhau .
\(\left(x+3\right)>0\Rightarrow x=-3\)
\(\left(x-2\right)>0\Rightarrow x=2\)
Mà x là số nguyên từ -3 đến 2 .
Vậy x = -2 ; -1 ; 0 ; 1.
Đ/S : ....
x-3<0
(=)x<3
vậy x thuộc{ x/x<3}
#Học-tốt
x.(x-3)<0
=>x-3<0:3
=>x-3<0
=>x<0+3
=>x<3
=>x\(\in\){2;1;0;-1;-2;.......................}
Chúc bn học tốt