giải PT sau:
x^2-3x+2+trị tuyệt đối của x-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x-7|=2x+3 (1)
Ta có:|x-7|=x-7<=>x-7 \(\ge\) 0<=>x\(\ge\)7
|x-7|=-(x-7)<=>x-7<0<=>x<7
Nếu x\(\ge\) 7thì (1) <=>x-7=2x+3
<=>x-2x=7+3
<=>-x = 10
<=>x=-10 (ko thỏa mãn đk)
Nếu x<7 thì (1) <=>-(x-7)=2x+3
<=>-x+7=2x+3
<=>-x-2x=-7+3
<=>-3x=-4
<=>x=4/3 (thỏa mãn đk)
c) x^2 -x-20=0
\(\Leftrightarrow x^2-5x+4x-20=0\)
\(\Leftrightarrow\left(x^2+4x\right)-\left(5x+20\right)=0\)
\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
Vậy...
|x - 2|+ |x - 3| = 4
Th1: x - 2 + x - 3 = 4
-5 = 4 (vô lí)
Th2: -(x - 2) + [-(x-3)] = 4
-x + 2 + (-x) + 3 =4
-2x + 5 = 4
-2x = -1
x = 1/2
Vậy x = 1/2
Vì VT không âm nên VP không âm => 12x ≥ 0 <=> x ≥ 0
Với x ≥ 0 pt <=> x + 1 + 2x + 1 + 3x + 5 + 5x + 2 = 12x
<=> 11x + 9 = 12x
<=> -x = -9 <=> x = 9 (tm)
Vậy x = 9
a) \(\left|3x-1\right|-\left|x+5\right|=0\)
\(\Rightarrow\left|3x-1\right|=\left|x+5\right|\)
\(\Rightarrow3x-1=\pm\left(x+5\right)\)
+) \(3x-1=x+5\Rightarrow x=3\)
+) \(3x-1=-\left(x+5\right)\Rightarrow x=-1\)
Vậy \(x\in\left\{3;-1\right\}\)
\(x^2-3x+2+|x-1|=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+|x-1|=0\left(1\right)\)
-TH1: x-1 \(\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
\(-TH_2:x-1< 0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=1\)
\(x=3\)