Tìm GTLN và GTNN của biểu thức B = \(\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x\(\ge0\).
Đặt \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Đặt \(t=\sqrt{x}\)( t >=0)
Có: \(A=\frac{t}{t^2+t+1}\)
<=> \(At^2+\left(A-1\right)t+A=0\)(1)
TH1: A =0 => t =0
TH2: A khác 0.
(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow\left(A-1\right)^2-4A^2\ge0\Leftrightarrow-3A^2-2A+1\ge0\Leftrightarrow-1\le A\le\frac{1}{3}\)
Do đó: A min = -1 thay vào tìm x
A max = 1/3 thay vào tìm x .
Kết luận....
Đặt \(t=\sqrt{x},t\ge0\)
- \(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)
Dấu "=" xảy ra khi t = 1 <=> x = 1
B đạt giá trị nhỏ nhất bằng 7 tại x = 1
- Không tồn tại giá trị lớn nhất.
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
- \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
- Không tồn tại giá trị nhỏ nhất.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Mọi người giải giúp em nhé
Tính hợp lí
(2018/2017-2019/2018+2020/2019)×(1/2-
1/3-1/6)×(1/2+1/3+1/4+...+1/2020)
Em cảm ơn
Tìm Max trước thôi nhé, Min nghĩ sau:V
a) đk: \(1\le x\le4\)
Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)
=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)
=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)
Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2
b) đk: \(-1\le x\le6\)
Tương tự sử dụng BĐT Bunhiacopxki:
\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)
Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)
+ Ta có : \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\ge0\)
\(B=\frac{1-\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Bx-B\sqrt{x}+B=1-\sqrt{x}\)
\(\Rightarrow Bx+\left(1-B\right)\sqrt{x}+B-1=0\) (1)
+ TH1 : \(B=0\Leftrightarrow1-\sqrt{x}=0\Leftrightarrow x=1\)
+ TH2 : \(B\ne0\) thì phương trình (1) là phương trình bậc 2 với ẩn x có a = B; b = 1 - B; c = B - 1
\(\Delta=b^2-4ac=\left(1-B\right)^2-4B\left(B-1\right)=-3B^2+2B+1\)
+ Pt (1) có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow-3B^2+2B+1\ge0\Leftrightarrow\left(3B+1\right)\left(1-B\right)\ge0\)
\(\Leftrightarrow\frac{-1}{3}\le B\le1\)
+ \(B=-\frac{1}{3}\Leftrightarrow...\) ( giải tìm x )
+ \(B=1\Leftrightarrow...\)
Vậy \(MinB=-\frac{1}{3}\Leftrightarrow x=...\)
\(MaxB=1\Leftrightarrow x=...\)