K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

a) Ta có: \(4x+x^2=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
b) \(3x^2-3x\left(x+2\right)=18\)
\(\Leftrightarrow3x^2-3x^2-6x=18\)
\(\Leftrightarrow-6x=18\)
\(\Leftrightarrow x=-3\)
Vậy x=-3

18 tháng 7 2016

a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)

\(3x=5\)

\(x=\frac{5}{3}\)

b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)

\(3x-8=2x-7\)

\(x=1\)

c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)

\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)

\(4x^2-3x-18=4x^2+3x\)

\(6x=-18\)

\(x=-3\)

d) Sai đề

e) ko bt

15 tháng 9 2021

a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0

TH2 3x-4=0 <=>x=4/3

KL:.....

b) (x+3)(x−1)+2x(x+3)=0.

<=> (x+3)(x-1+2x)=0

TH1: x+3=0 <=> x=-3

TH2  x-1=0  <=> x=1

KL:.....

c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 ​\)

KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)

KL:....

15 tháng 9 2021

a) \(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(x^2-4x=4\)

\(\Leftrightarrow\left(x-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)

\(\Leftrightarrow-4x+3+5x+2=0\)

\(\Leftrightarrow x=-5\)

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

26 tháng 12 2021

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4

13 tháng 12 2019

3x^3-5x^2+9x-15 3x-5 x^2+3 3x^3-5x^2 9x-15 9x-15 0

Vậy \(3x^2-5x^2+9x-15=\left(3x-5\right)\left(x^2+3\right)\)

b

\(\left(x+1\right)\left(x-2\right)-x\left(x-3\right)=0\)

\(\Leftrightarrow x^2-2x+x-2-x^2+3x=0\)

\(\Leftrightarrow2x-2=0\)

\(\Leftrightarrow x=1\)

b

\(x^2+4x+3=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-1=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1;x=-3\)

a) Ta có: \(\left(x^2+3x+2\right)^2=\left(x^2-x-2\right)^2\)

\(\Leftrightarrow\left(x^2+3x+2\right)^2-\left(x^2-x-2\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x+2-x^2+x+2\right)\left(x^2+3x+2+x^2-x-2\right)=0\)

\(\Leftrightarrow\left(4x+4\right)\left(2x^2+2x\right)=0\)

\(\Leftrightarrow4\left(x+1\right)\cdot2x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: S={0;-1}

b) Ta có: \(x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

Vậy: S={-1;2;-2}