Cho: 2f(x)+3×f(1/x)=2x-1.
Tính f(2).
Giúp mk vs thanks.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x=7 ta có:\(y=f\left(7\right)=2f\left(7\right)-f\left(\frac{1}{7}\right)=2.7^2-1=97\)
Vậy \(f\left(7\right)=97\)
Hình như đề sai thì phải bạn ak
cho mk hỏi phân thức \(\frac{x^2-2017}{1+x^{2018}}\) được xác định khi
a) Ta có:
f(0) = -2.03 + 3.02 - 0 + 5 = 0 + 0 - 0 + 5 = 5
g(-1) = 2.(-1)3 - 2.(-1)2 + (-1) - 9 = -2 - 2 - 1 - 9 = -14
b) f(x) + g(x) = (-2x3 + 3x2 - x + 5) + (2x3 - 2x2 + x - 9)
= -2x3 + 3x2 - x + 5 + 2x3 - 2x2 + x - 9
= (-2x3 + 2x3) + (3x2 - 2x2) - (x - x) + (5 - 9)
= x2 - 4
f(x) - g(x) = (-2x3 + 3x2 - x + 5) - (2x3 - 2x2 + x - 9)
= -2x3 + 3x2 - x + 5 - 2x3 + 2x2 - x + 9
= -(2x3 + 2x3) + (3x2 + 2x2) - (x + x) + (5 + 9)
= -4x3 + 5x2 - 2x + 14
Đúng là sai đề thật .... mk sửa lại r ... bạn có thể giúp mk xem lại đc k
a) +) \(f\left(-2\right)=\left|3x-1\right|=\left|3.\left(-2\right)-1\right|=\left|-7\right|=7\)
+) \(f\left(2\right)=\left|3x-1\right|=\left|3.2-1\right|=\left|5\right|=5\)
+) \(f\left(-\frac{1}{4}\right)=\left|3x-1\right|=\left|3.\left(-\frac{1}{4}\right)-1\right|=\left|-\frac{7}{4}\right|=\frac{7}{4}\)
+) \(f\left(\frac{1}{4}\right)=\left|3x-1\right|=\left|3.\frac{1}{4}-1\right|=\left|-\frac{1}{4}\right|=\frac{1}{4}\)
b) +) \(f\left(x\right)=10\)
\(\left|3x-1\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=10\\3x-1=-10\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{3}\\x=-3\end{cases}}\)
+) \(f\left(x\right)=-3\)
\(\left|3x-1\right|=-3\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=-3\\3x-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
+) \(f\left(x\right)=1-x\)
\(\left|3x-1\right|=1-x\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=1-x\\-\left(3x-1\right)=1-x\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
b. Sửa lại bài b nhé!
+) f (x) =10. đúng
+) f (x ) = -3
Có: \(\left|3x-1\right|=-3\) vô lí vì \(\left|3x-1\right|\ge0\)
=> Không tồn tại x.
+) \(f\left(x\right)=1-x\)
\(\left|3x-1\right|=1-x\)
TH1: \(3x-1\ge0\)
có: 3x -1 = 1 -x
4x = 2
x =1/2 ( thỏa mãn)
TH2: 3x -1 < 0
có: 1 - 3x = 1 - x
2x = 0
x = 0.( thỏa mãn)
Vậy x =1/2 hoặc x =0.
Answer:
\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Thay x = 2 vào, ta được:
\(f\left(2\right)+2f\left(\frac{1}{2}\right)=2^2\Rightarrow f\left(2\right)=2f\left(\frac{1}{2}\right)=4\left(\text{*}\right)\)
Thay \(x=\frac{1}{2}\) vào, ta được:
\(f\left(\frac{1}{2}\right)+2\left(\frac{1}{\frac{1}{2}}\right)=\left(\frac{1}{2}\right)^2\Rightarrow f\left(\frac{1}{2}\right)+2f\left(2\right)=\frac{1}{4}\Rightarrow2f\left(\frac{1}{2}\right)+4f\left(2\right)=\frac{1}{2}\left(\text{*}\text{*}\right)\)
Từ (*) và (**) \(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-\left(2f\left(\frac{1}{2}\right)+4f\left(2\right)\right)=4-\frac{1}{2}\)
\(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-2f\left(\frac{1}{2}\right)-4f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow-3f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow f\left(2\right)=\frac{7}{2}.\left(-3\right)=\frac{-7}{6}\)
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3
Lời giải:
Thay $x=2$ ta có:
$2f(2)+3f(\frac{1}{2})=2.2-1=3$
$\Rightarrow 4f(2)+6f(\frac{1}{2})=6(1)$
Thay $x=\frac{1}{2}$ ta có:
$2f(\frac{1}{2})+3f(2)=2.\frac{1}{2}-1=0$
$\Rightarrow 6f(\frac{1}{2})+9f(2)=0(2)$
Lấy $(2)$ trừ $(1)$ suy ra: $5f(2)=-6\Rightarrow f(2)=\frac{-6}{5}$
Lời giải:
Thay $x=2$ ta có:
$2f(2)+3f(\frac{1}{2})=2.2-1=3$
$\Rightarrow 4f(2)+6f(\frac{1}{2})=6(1)$
Thay $x=\frac{1}{2}$ ta có:
$2f(\frac{1}{2})+3f(2)=2.\frac{1}{2}-1=0$
$\Rightarrow 6f(\frac{1}{2})+9f(2)=0(2)$
Lấy $(2)$ trừ $(1)$ suy ra: $5f(2)=-6\Rightarrow f(2)=\frac{-6}{5}$