nếu x+y+zkhông âm , chứng minh rằng x^3+y^3+z^3 >= 3xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(VT=x^3+y^3+z^3-3xyz.\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)



2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha

Nhân phân phối zô:
B = (x2 +x -6) - (x2 -x -6) = 2x - 12 ( 2x luôn chẵn. Trừ thêm 1 số chẵn thì sẽ luôn chẵn)

Từ x > y > 0 ta có:
\(x>y\Rightarrow xy>y^2\) (1)
\(x>y\Rightarrow x^2>xy\) (2)
Từ (1) và (2) suy ra x2 > y2.
\(x^2>y^2\Rightarrow x^3>xy^2\) (3)
\(x>y\Rightarrow xy^2>y^3\) (4)
Từ (3) và (4) suy ra x3 > y3.
kham khảo
Câu hỏi của Nguyễn Huy Hải - Toán lớp 7 - Học toán với OnlineMath
vào thống kê hỏi đáp của mk
hc tốt