K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

Ta có: \(\frac{9x^2-12x+4}{x^2-2x+2}\)

\(\frac{9\left(x^2-2x+2\right)+6x-14}{x^2-2x+2}\)

\(9+\frac{6x-14}{x^2-2x+2}\)

\(9+\frac{x^2-2x+2-\left(x^2-8x+16\right)}{\left(x^2-2x+1\right)+1}\)

\(9+1-\frac{\left(x-4\right)^2}{\left(x-1\right)^2+1}\)

\(10-\frac{\left(x-4\right)^2}{\left(x-1\right)^2+1}\le10\forall x\)

Dấu "=" xảy ra <=> x - 4 = 0 <=> x = 4

Vậy Max của \(\frac{9x^2-12x+4}{x^2-2x+2}\)= 10 khi x = 4

5 tháng 1 2020

Đặt \(P=\frac{9x^2-12x+4}{x^2-2x+2}\)

\(=\frac{10\left(x^2-2x+2\right)-x^2+8x-16}{x^2-2x+2}\)

\(=\frac{10\left(x^2-2x+2\right)}{x^2-2x+2}-\frac{x^2-8x+16}{x^2-2x+2}\)

\(=10-\frac{\left(x-4\right)^2}{x^2-2x+2}\)

Ta thấy : \(\frac{\left(x-4\right)^2}{x^2-2x+2}\ge0\left(x^2-2x+2=\left(x-1\right)^2+1,\left(x-4\right)^2\ge0\right)\)

\(\Rightarrow10-\frac{\left(x-4\right)^2}{x^2-2x+2}\le10\)

hay \(P\le10\)

Dấu "=" xảy ra \(\Leftrightarrow x=4\)

Vậy : GTLN của \(P=10\Leftrightarrow x=4\)

19 tháng 12 2020

\(\left[1;-4\right]??\)

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

4 tháng 4 2017

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

NV
2 tháng 1 2022

Xét trên \(\left[-1;2\right]\Rightarrow y=x^2-2x-8\) có \(-\dfrac{b}{2a}=1\)

\(y\left(-1\right)=-5;y\left(1\right)=-9;y\left(2\right)=-8\)

Xét trên \((2;4]\Rightarrow y=2x-12\)

\(y\left(4\right)=-4\)

So sánh các giá trị trên, ta được \(M=-4;m=-9\)

\(\Rightarrow M+m=-13\)

5 tháng 1 2022

Cho em hỏi tại sao khi xét (2;4] lại ko lấy số khác mà lại lấy số 4 v ạ?