tìm GTNN của B= x^4-2xy(x^2-4y) + x^2 - 6x+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2P = \(2x^2+4xy+4y^2-12x-8y+50\)
= \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)
= \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)
=> P \(\ge15\)
Dấu '' = '' xảy ra khi x = 4 ; y = -1
\(P=\) \(x^2-2xy+4y^2-2x-10+8\)
\(=x^2-2xy+4y^2-2x-2\)
\(=x^2-2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+4y^2-2\)
\(=\left(x-y-1\right)^2-y^2-2y-1+4y^2-2\)
\(=\left(x-y-1\right)^2+3y^2-2y-3\)
\(=\left(x-y-1\right)^2+3\left(y^2-\frac{2}{3}y-1\right)\)
\(=\left(x-y-1\right)^2+3\left(y^2-2y\frac{1}{3}+\frac{1}{9}-\frac{10}{9}\right)\)
\(=\left(x-y-1\right)^2+3\left(y-\frac{1}{3}\right)^2-\frac{10}{3}\)
\(\Rightarrow P\ge\frac{-10}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-\frac{1}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=1\\y=\frac{1}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1+\frac{1}{3}=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)
Vậy giá trị nhỏ nhất của P là \(\frac{-10}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)
các anh chị pro toán giúp em