K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

\(5x^2-17x-18=0\)

\(\Leftrightarrow5x^2-30x+3x-18=0\)

\(\Leftrightarrow5x\left(x-6\right)+3\left(x-6\right)=0\)

\(\Leftrightarrow\left(5x+3\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x+3=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=-3\\x=6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-3}{5}\\x=6\end{cases}}}\)

Vậy \(x=\frac{-3}{5};x=6\)

16 tháng 10 2021

\(17x^2-3x\left(5x+1\right)-2x^2=18\)

\(\Rightarrow17x^2-15x^2-3x-2x^2=18\)

\(\Rightarrow-3x=18\Rightarrow x=-6\)

a: \(\Leftrightarrow4x^2+9x-4x-9=0\)

=>(4x+9)(x-1)=0

=>x=1 hoặc x=-9/4

b: \(\Leftrightarrow x^2-x-4x+4=0\)

=>(x-1)(x-4)=0

=>x=1 hoặc x=4

c: \(\Leftrightarrow5x^2-5x-12x+12=0\)

=>(x-1)(5x-12)=0

=>x=12/5 hoặc x=1

d: \(\Leftrightarrow x^2-4x+x-4=0\)

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

1 tháng 3 2022

a, Ta có a + b + c = 4 + 5 - 9 = 0

vậy pt có 2 nghiệm x = 1 ; x = -9/4 

b, Ta có a + b + c = 1 - 5 + 4 = 0 

vậy pt có 2 nghiệm x = 1 ; x = 4 

c, Ta có a + b + c = 5 - 17 + 12 = 0 

vậy pt có 2 nghiệm x = 1 ; x = 12/5 

d, Ta có a - b + c = 1 + 3 - 4 = 0 

vậy pt có 2 nghiệm x = -1 ; x = 4 

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

2 tháng 11 2016

mình cũng đang bí bài này ai giúp với

9 tháng 2 2018

1.\(\left|9-7x\right|=5x-3\)

\(\Leftrightarrow\orbr{\begin{cases}9-7x=5x-3\\9-7x=-5x-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-7x-5x=-9-3\\-7x+5x=-9-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-12x=-12\\-2x=-12\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-12:\left(-12\right)\\x=-12:\left(-2\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)

2.\(8x-\left|4x+1\right|=x+2\)

\(\Rightarrow\left|4x+1\right|=8x-x+2\)

\(\Rightarrow\left|4x+1\right|=7x+2\)

\(\Leftrightarrow\orbr{\begin{cases}4x+1=7x+2\\4x+1=-7x+2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x-7x=2-1\\4x+7x=2-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-3x=1\\11x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1:\left(-3\right)\\x=1:11\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{1}{11}\end{cases}}\)

a: =>|7x-9|=5x-3

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{3}{5}\\\left(7x-9-5x+3\right)\left(7x-9+5x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{3}{5}\\\left(2x-6\right)\left(12x-12\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{3;1\right\}\)

b: =>|17x-5|=|17x+5|

=>17x-5=17x+5(vô lý) hoặc 17x-5=-17x-5

=>34x=0

hay x=0

c: =>|3x+4|=|4x-18|

=>4x-18=3x+4 hoặc 4x-18=-3x-4

=>x=22 hoặc 7x=14

=>x=22 hoặc x=2

18 tháng 9 2017

 Cái này bạn đưa về dạng bpt tích nha 
(4x-3)căn(x^2-3x+4) >= 8x-6 
<=>(4x-3)[căn(x^2-3x+4)-2]>=0 
<=>4x-3>=0 và căn(x^2-3x+4)-2>=0 
hoặc 4x-3<=0 và căn(x^2-3x+4)-2<=0 
Nếu 4x-3>=0 và căn(x^2-3x+4)-2>=0 
<=>x>=3/4 và căn(x^2-3x+4)>=2 
<=>x>=3/4 và x^2-3x+4>=4 (vì x^2-3x+4>0 với mọi x) 
<=>x>=3/4 và x(x-3)>=0 
Bạn tiếp tục đưa cái sau về bpt tích nữa nha, giải giống mình ở trên đó 
Sau đó suy ra x>=3/4 và x>=3 hoặc x<=0 
<=>x>=3 
Nếu 4x-3<=0 và căn(x^2-3x+4)-2<=0 
Giải giống trên suy ra x<=3/4 và 0<=x<=3 
<=>0<=x<=3/4 
Vậy bpt có nghiệm là x>=3 và 0<=x<=3/4.  

 Cái này bạn đưa về dạng bpt tích nha 
(4x-3)căn(x^2-3x+4) >= 8x-6 
<=>(4x-3)[căn(x^2-3x+4)-2]>=0 
<=>4x-3>=0 và căn(x^2-3x+4)-2>=0 
hoặc 4x-3<=0 và căn(x^2-3x+4)-2<=0 
Nếu 4x-3>=0 và căn(x^2-3x+4)-2>=0 
<=>x>=3/4 và căn(x^2-3x+4)>=2 
<=>x>=3/4 và x^2-3x+4>=4 (vì x^2-3x+4>0 với mọi x) 
<=>x>=3/4 và x(x-3)>=0 
Bạn tiếp tục đưa cái sau về bpt tích nữa nha, giải giống mình ở trên đó 
Sau đó suy ra x>=3/4 và x>=3 hoặc x<=0 
<=>x>=3 
Nếu 4x-3<=0 và căn(x^2-3x+4)-2<=0 
Giải giống trên suy ra x<=3/4 và 0<=x<=3 
<=>0<=x<=3/4 
Vậy bpt có nghiệm là x>=3 và 0<=x<=3/4.