K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n}.3^3+3^n.3+2^n.2^3+2^n.2^2\)

\(=3^n(3^3+3)+2^n(2^3+2^2)\)

\(=3^n.30+2^n. 12=6(3^n.5+2^n.2)\vdots 6\)

Ta có đpcm.

31 tháng 12 2019

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)

\(=3^n.\left(3^3+3\right)+2^n.\left(2^3+2^2\right)\)

\(=3^n.30+2^n.12\)

\(=3^n.5.6+2^n.2.6\)

\(=6.\left(3^n.5+2^n.2\right)\)

\(6⋮6\)

\(\Rightarrow6.\left(3^n.5+2^n.2\right)⋮6\) \(\forall n\in N.\)

\(\Rightarrow3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\) \(\forall n\in N\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 4 2021

thì sao? sao ko thấy câu hỏi?

14 tháng 2 2018

\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)

\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)

\(=6.3^{n+1}+6.2^{n+1}\)

\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)

MÌNH KO viết đề nha

=3nx33+3nx3+2nx22

=3n(33+3)+2nx22

=

6 tháng 8 2021

3n+2 -2n+2 +3n -2n

=3.32 -2n .22 +3n -22

=3n(9+)-2n(4-1)

Vì 3n .10 ⋮10

=> 3n .10- 2n .3⋮10

=>3n +2 -2n+2 +3n -2n ⋮10

4 tháng 11 2021

sai

trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)

=>2^n-1.10 chia hết cho 10

 

11 tháng 3 2017

Ta có : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+1}.3\)

\(=3^n.5.6+2^{n+1}.6⋮6\)

11 tháng 3 2017

Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+2}.\left(3^2+1\right)+2^{n+2}.\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.10+2^{n+1}.2.3\)

\(\Rightarrow3^n.5.6+2^{n+1}.6⋮6\)

\(\Rightarrow3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)