K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

\(H\ge\left|\left(x+2\right)+\left(4-x\right)\right|\)

\(\Rightarrow H\ge2\)

\(\Rightarrow Hmin=2\Leftrightarrow\left|x-2\right|+\left|x-4\right|=2\)

NẾU \(x< 2\):

\(\left|2-x\right|+\left|4-x\right|=2\)

\(\Leftrightarrow2-x+4-x=2\)

\(\Leftrightarrow6-2x=2\Leftrightarrow x=2\left(KTM\right)\)

NẾU :\(2\le x\le4\)

\(\left|x-2\right|+\left|4-x\right|=2\)

\(\Leftrightarrow x-2+4-x=2\left(TM\right)\)

NẾU :\(x>4\)

\(\Leftrightarrow\left(x-2\right)+\left(x-4\right)=2\)

\(\Leftrightarrow2x-6=2\Rightarrow x=4\left(KTM\right)\)

VẬY:\(Hmin=2\)khi\(2\le x\le4\)

26 tháng 7 2019

#)Giải :

\(H=\left|x-4\right|\left(2-\left|x-4\right|\right)\)

\(=-\left(\left|x-4\right|\right)^2+2\left|x-4\right|\)

\(=-\left[\left(\left|x-4\right|\right)^2-2\left|x-4\right|\right]\)

\(=-\left[\left(\left|x-4\right|-1\right)^2-1\right]\le0\)

Dấu ''='' xảy ra khi \(\left|x-4\right|-1=0\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

Bạn ơi mình nghĩ GTNN phải là -1 

Vì ko có GTNN bằng 0

12 tháng 1 2021

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

12 tháng 1 2021

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).

13 tháng 11 2016

a) GTNN = 0 khi x = -1

b) GTNN = 503 khi x =0

13 tháng 11 2016

b sai min=39 khi x=-2

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

16 tháng 1 2018

Đề phải là tìm GTLN chứ bạn ơi !

Đặt |x-4| = a ( a >= 0 )

Đặt A = |x-4|.(2-|x-4|)

Khi đó : A = a.(2-a) = 2a-a^2

=> -A = a^2-2a = (a^2-2a+1)-1 = (a-1)^2 - 1 >= -1

=> A < = -1 : (-1) = 1

Dấu "=" xảy ra <=> |x-4|-1 = 0 <=> |x-4| = 1 <=> x-4=1 hoặc x-4=-1 <=> x=5 hoặc x=3

Vậy GTLN của A = 1 <=> x=5 hoặc x=3

Tk mk nha

29 tháng 8 2021

Giấ trị nhỏ nhất là 8

29 tháng 8 2021

GTNN = 8 đạt khi   t=0\Leftrightarrow x=2t=0x=2

 
               
 
28 tháng 4 2018

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(A=\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\)

Ta có: \(\left|1-x\right|+\left|x-4\right|\ge\left|1-x+x-4\right|=3\)

           \(\left|2-x\right|+\left|x-3\right|\ge\left|2-x+x-3\right|=1\) 

=> \(\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\ge3+1=4\)

=> \(A\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x-4\right)\ge0\\\left(2-x\right)\left(x-3\right)\ge0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}}\)

                        \(\Leftrightarrow2\le x\le3\)

Vậy \(A_{min}=4\Leftrightarrow2\le x\le3\)