Tìm GTNN:
\(H=\left|x-2\right|+\left|x-4\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(H=\left|x-4\right|\left(2-\left|x-4\right|\right)\)
\(=-\left(\left|x-4\right|\right)^2+2\left|x-4\right|\)
\(=-\left[\left(\left|x-4\right|\right)^2-2\left|x-4\right|\right]\)
\(=-\left[\left(\left|x-4\right|-1\right)^2-1\right]\le0\)
Dấu ''='' xảy ra khi \(\left|x-4\right|-1=0\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Bạn ơi mình nghĩ GTNN phải là -1
Vì ko có GTNN bằng 0
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).
Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).
b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).
Đẳng thức xảy ra khi x = \(\sqrt{6}\).
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Đề phải là tìm GTLN chứ bạn ơi !
Đặt |x-4| = a ( a >= 0 )
Đặt A = |x-4|.(2-|x-4|)
Khi đó : A = a.(2-a) = 2a-a^2
=> -A = a^2-2a = (a^2-2a+1)-1 = (a-1)^2 - 1 >= -1
=> A < = -1 : (-1) = 1
Dấu "=" xảy ra <=> |x-4|-1 = 0 <=> |x-4| = 1 <=> x-4=1 hoặc x-4=-1 <=> x=5 hoặc x=3
Vậy GTLN của A = 1 <=> x=5 hoặc x=3
Tk mk nha
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\)
Ta có: \(\left|1-x\right|+\left|x-4\right|\ge\left|1-x+x-4\right|=3\)
\(\left|2-x\right|+\left|x-3\right|\ge\left|2-x+x-3\right|=1\)
=> \(\left|1-x\right|+\left|x-4\right|+\left|2-x\right|+\left|x-3\right|\ge3+1=4\)
=> \(A\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x-4\right)\ge0\\\left(2-x\right)\left(x-3\right)\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}}\)
\(\Leftrightarrow2\le x\le3\)
Vậy \(A_{min}=4\Leftrightarrow2\le x\le3\)
\(H\ge\left|\left(x+2\right)+\left(4-x\right)\right|\)
\(\Rightarrow H\ge2\)
\(\Rightarrow Hmin=2\Leftrightarrow\left|x-2\right|+\left|x-4\right|=2\)
NẾU \(x< 2\):
\(\left|2-x\right|+\left|4-x\right|=2\)
\(\Leftrightarrow2-x+4-x=2\)
\(\Leftrightarrow6-2x=2\Leftrightarrow x=2\left(KTM\right)\)
NẾU :\(2\le x\le4\)
\(\left|x-2\right|+\left|4-x\right|=2\)
\(\Leftrightarrow x-2+4-x=2\left(TM\right)\)
NẾU :\(x>4\)
\(\Leftrightarrow\left(x-2\right)+\left(x-4\right)=2\)
\(\Leftrightarrow2x-6=2\Rightarrow x=4\left(KTM\right)\)
VẬY:\(Hmin=2\)khi\(2\le x\le4\)