\(\frac{10^3+2\cdot5^5+5^3}{65}\)
Giúp minh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10^3+2.5^3+5^3}{65}=\frac{10^3+5^3.\left(2+1\right)}{65}=\frac{10^3+5^3.3}{65}\)
= \(\frac{10^3+375}{65}=\frac{1375}{65}\)
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+2.125+125}{65}=\frac{8.125+2.125+125.1}{65}=\frac{125\left(8+2+1\right)}{65}=\frac{125.11}{65}=\frac{1375}{65}=\frac{275}{13}\)
\(\frac{4}{3.5}-\frac{6}{5.7}+\frac{8}{7.9}+\frac{10}{9.11}+...+\frac{2016}{2015.2017}\)
\(=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{2017}\right)\)
\(=2.\frac{2014}{6051}\)
\(=\frac{4028}{6051}\)
\(\Rightarrow BT>\frac{1}{6}\)
\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2.2^9}\)
=\(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{9}{4}:\frac{3}{16}\right)^3}{2^7.5^2.2^9}\)
=\(\frac{2^7+\left(\frac{9}{4}.\frac{16}{3}\right)^3}{2^7.5^2.2^9}\)
=\(\frac{2^7+3^3.4^3}{2^7.5^2.2^9}\)
=\(\frac{2^7+3^3.2^6}{2^7.5^2.2^9}\)
=\(\frac{2^6.\left(27+2\right)}{2^6.5^2.2^{10}}\)
=\(\frac{29}{25600}\)
Đoạn \(\frac{2^6\cdot\left(27+2\right)}{2^6\cdot5^2\cdot2^{10}}\)là sai rồi bn ơi!!!
Bn phải lm như mục trên là:
\(\frac{2^6\left(2+3^3\right)}{2^7\left(5^2+2^2\right)}\)\(=\frac{2^6\cdot29}{2^7\cdot29}=\frac{1}{2}\)
Nhưng dù sao cx c.ơn bn vì đã giúp mk,mk sẽ cho bn 1 ths nka!!!
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
\(\frac{4.5.6}{14.15.16}\)=\(\frac{1.1.3}{7.3.4}\)=\(\frac{1.1.1}{7.1.4}\)=\(\frac{1}{28}\)
Bạn viết đề sai rồi, mình sửa đề nhé, bài này ngắn lắm =((
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{101}\right)=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)(rút gọn phân số)
Ta có :
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\) ( sai đề rồi )
\(=\)\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\)\(\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(=\)\(\frac{3}{2}.\frac{100}{101}\)
\(=\)\(\frac{150}{101}\)
Vậy \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}=\frac{150}{101}\)
Chúc bạn học tốt ~
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+5^3.3}{65}=\frac{1000+375}{65}\)
= \(\frac{1375}{65}=\frac{275}{13}\)
\(\frac{10^3+2.5^5+5^3}{65}\)
= \(\frac{\left(2.5\right)^3+2.5^5+5^3}{5.13}\)
= \(\frac{2^3.5^3+2.5^5+5^3}{5.13}\)
= \(\frac{5^3\left(2^3+2+1\right)}{5.13}\)
= \(\frac{5^2.11}{13}\)
= \(\frac{275}{13}\)