chứng minh ràng mọi số tự nhiên n thì n(n+1) luôn chia hết cho 2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VX
2
19 tháng 12 2014
Chắc chắn sai đề vì n(n+1) luôn là số lẻ làm sao mà chia hết cho 2 được
LC
10 tháng 10 2015
Vì n là số tự nhiên
=>n có 2 dạng là 2k và 2k+1
*Xét n=2k=>n.(n+5)=2k.(2k+5) chia hết cho 2
=>n.(n+5) chia hết cho 2
*Xét n=2k+1=>n.(n+5)=(2k+1).(2k+1+5)=(2k+1).(2k+6)=(2k+1).(k+3).2 chia hết cho 2
=>n.(n+5) chia hết cho 2
Vậy mọi số tự nhiên n thì n.(n+5) chia hết cho 2
ta có n và n+1 là hai số tự nhiên liên tiếp
nên nhất định 1 trong hai số là số chẵn
nên n(n+1) chia hết cho 2