cho A= 2+2^2+2^3+2^4+..........+2^20
Tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+22+23+24+....+22010
=22+22+23+23+24+....+22010
=22.2+23+24+25+....+22010
=23+23+24+25+...+22010
=23.2+24+25+26+...+22010
=24+24+25+26+...+22010
...........
=22009+22009+22010
=22009.2+22010
=22010+22010
=22010.2
=22011
=>A=22011
vậy... (đccm)
~~~~~~~
ta thấy:
A=22011=(210)201.2=1024201.2
mà 1024101 có số mũ là 1 số lẻ
=>1024101 có tận cùng là 4
=>1024201.2=........4 . 2=.........8
=>22011 có tận cùng là 8
=>A có tận cùng là c/số 8
vậy....
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
\(A=2+2^2+2^3+2^4+..+2^{20}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=\left(...0\right)+...+\left(2^{4\cdot4+1}+2^{4\cdot4+2}+2^{4\cdot4+3}+2^{5\cdot4}\right)\)
\(A=\left(...0\right)+...+\left(2^{4\cdot4}\cdot2+2^{4\cdot4}\cdot2^2+2^{4\cdot4}\cdot2^3+2^{5\cdot4}\right)\)
\(A=\left(...0\right)+...+\left(...6\right)\cdot2+\left(...6\right)\cdot4+\left(...6\right)\cdot8+\left(...6\right)\)
\(A=\left(...0\right)+...+\left(...2\right)+\left(...4\right)+\left(...8\right)+\left(...6\right)\)
\(A=\left(...0\right)\)
Vậy chữ số tận cùng của A là 0