a, 27- 27x + 9x^2 -x^3
b, 125 - x^3
c, 16x^3 - 9y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-xz-9y^2+3yz\)
\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)
\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
b) \(x^3-x^2-5x+125\)
\(=\left(x^3+125\right)-\left(x^2+5x\right)\)
\(=\left(x^3+5^3\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
c) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)
\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)
\(=\left(x-3\right)\left(x^2+x+9\right)\)
e) \(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
f) \(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)
\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
a) \(x^2-xz-9y^2+3yz\)
\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
c) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)+\left(2x^2-6x\right)\)
\(=\left(x-3\right)\left(x^2-3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x+9+2x\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
Hệ phương trình
\(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(y-3\right)^3=0\\\left(z-3\right)^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=3\end{cases}}}\)
\(hpt=>\hept{\begin{cases}x^3+y^3-9y^2+27y-27=y^3.\\y^3+z^3-9z^2-27x-27=z^3.\\z^3+x^3-9y^2-27y-27=x^3.\end{cases}}\)
\(=>\hept{\begin{cases}x^3=y^3-\left(y-3\right)^3\\y^3=z^3-\left(z-3\right)^3\\z^3=x^3-\left(x-3\right)^3\end{cases}}\)
Do vai trong của x, y , z như nhau nên ta giả sử x=max{x,y,z}
Do giả sử ta có
\(=>\hept{\begin{cases}x^3\ge z^3\\-\left(y-3\right)^3\ge\left(x-y\right)^3\end{cases}}\)
=>\(\hept{\begin{cases}y^3-\left(y-3\right)^3\ge x^3-\left(x-3\right)^3\\-\left(y-3\right)^3\ge-\left(x-3\right)^3\end{cases}}\)
=>\(y^3\ge x^3=>y\ge x\)
Từ đây , ta suy ra x=y=z
Thay zô 1 pt bất kì tao tìm được x=y=z=3
Vậy nghiệm duy nhất của hệ phương trình là x=y=z=3
a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)
b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)
\(a,A=\left(x+5\right)^3\)
\(b,B=\left(x-3\right)^3\)
\(c,C=\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}=\left(\frac{x}{2}+\frac{y}{3}\right)^3\)
Mk nghĩ đề bài phần c fải như trên ,cn đâu bn tự thay số vào nha.
a: \(27-27x+9x^2-x^3=\left(3-x\right)^3\)
b: \(125-x^3=\left(5-x\right)\left(25+5x+x^2\right)\)