K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

ta có \(a< a+100\)(với a >0)

\(b< b+100\)(với b >0)

\(\Rightarrow\frac{a}{b}< \frac{a+100}{b+100}\)

22 tháng 12 2019

?

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

22 tháng 6 2016

bạn xét a>b hay b<a là đc

\(a>b\Rightarrow a+2016>b+2016\)

\(\Rightarrow\frac{a}{b}=\frac{b+a-b}{b}\)

\(\Rightarrow\frac{a+2016}{b+2016}=\frac{b+2016+a+2016-b+2016}{b+2016}=\frac{b+a-a}{b+2016}\)

Vì: \(\frac{b+a-a}{b}>\frac{b+a-b}{b+2016}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

7 tháng 7 2016

Ta có:

  • \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)

               \(=\frac{ab+2016a}{b\left(b+2016\right)}\)

  • \(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}\)

                             \(=\frac{ab+2016b}{b\left(b+2016\right)}\)

Vì \(a>b\Rightarrow2016a>2016b\)

\(\Rightarrow ab+2016a>ab+2016b\)

\(\Rightarrow\frac{ab+2016a}{b\left(b+2016\right)}>\frac{ab+2016b}{b\left(b+2016\right)}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

5 tháng 7 2016

Ta có:

\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)

Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)

Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)

8 tháng 8 2016

Áp dụng hằng đẳng thức \(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+....+a^2+a+1\right)\)

để thu gọn biểu thức rồi lập hiệu A - B để so sánh

8 tháng 8 2016

Biết chết liền

27 tháng 2 2016

m = 3/2 = 1.5 >1

27 tháng 2 2016

kich mk di

diem mk thap qua

thank you

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)