K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

   Bài 2. Cho đường tròn (O), một điểm A nằm bên ngoài (O). Kẻ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).a) Khẳng định nào sau đây là đúng?A. OA // BC.                                                                           B. OA ^ BC.C. OA là đường trung trực của BC.                                        D. OA =...
Đọc tiếp

   Bài 2. Cho đường tròn (O), một điểm A nằm bên ngoài (O). Kẻ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).

a) Khẳng định nào sau đây là đúng?

A. OA // BC.                                                                           B. OA ^ BC.

C. OA là đường trung trực của BC.                                        D. OA = 2BC.

b) Biết OA = 10cm; OB = 6cm. Chu vi tam giác ABC là

A. 20cm.                      B. 22cm.                     C. 24cm.                         D. 26cm.

c) Biết OB = 4cm; AB = 6cm. Độ dài dây BC là

A. .              B. .             A. .               A. .     

   Bài 3. Từ điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC với (O). D là một điểm bất kì trên cung nhỏ BC. Tiếp tuyến tại D của (O) cắt AB, AC lần lượt tại M và N. Biết OA = 5cm và OB = 3cm. Chu vi tam giác AMN là

A. 4cm.                          B. 6cm.                       C. 8cm.                      D. 10cm

1
18 tháng 12 2021

Bài 2: C

18 tháng 12 2021

bn ơi mấy câu kia thì đáp án j vậy

 

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm H của BC

Gọi K là giao điểm của OS và ED

Xét (O) có

SE,SD là các tiếp tuyến

Do đó: SE=SD

=>S nằm trên đường trung trực của ED(3)

Ta có: OE=OD

=>O nằm trên đường trung trực của ED(4)

Từ (3) và (4) suy ra SO là đường trung trực của ED

=>SO\(\perp\)ED tại trung điểm K của ED

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)

Xét ΔODS vuông tại D có DK là đường cao

nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)

Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

Xét ΔOHS và ΔOKA có

\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

góc HOS chung

Do đó: ΔOHS đồng dạng với ΔOKA

=>\(\widehat{OHS}=\widehat{OKA}\)

=>\(\widehat{OHS}=90^0\)

=>HO\(\perp\)SH tại H

mà HO\(\perp\)BH tại H

và SH,BH có điểm chung là H

nên S,H,B thẳng hàng

mà H,B,C thẳng hàng

nên S,B,H,C thẳng hàng

=>S,B,C thẳng hàng

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

26 tháng 11 2023

a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC (3)

b: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔDBC vuông tại B

=>DB\(\perp\)BC(4)

Từ (3) và (4) suy ra DB//OA

c: Đề sai rồi bạn

26 tháng 11 2023

À quên OB = 2cm, OA = 4cm nhé, tớ chưa sửa 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2:

a) Ta thấy:

$6^2+4,5^2=7,5^2\Leftrightarrow AB^2+AC^2=BC^2$

Theo định lý Pitago đảo ta suy ra $ABC$ là tam giác vuông tại $A$

b) 

$S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}$

$\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.4,5}{7,5}=3,6$ (cm) 

$\sin B=\frac{AC}{BC}=\frac{4,5}{7,5}\Rightarrow \widehat{B}\approx 36,8^0$

$\Rightarrow \widehat{C}\approx 90^0-36,78^0=53,2^0$

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình 2:

undefined

31 tháng 12 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà BC\(\perp\)OA

nên CD//OA

2: Ta có: OA là đường trung trực của BC

OA cắt BC tại E

Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E

Xét ΔOBA vuông tại B có BE là đường cao

nên \(OE\cdot OA=OB^2\)

=>\(OE\cdot OA=OD^2\)

=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

Xét ΔOED và ΔODA có

\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

\(\widehat{EOD}\) chung

Do đó: ΔOED~ΔODA

=>\(\widehat{ODE}=\widehat{OAD}\)

 

21 tháng 1 2024

mik c.ơn

10 tháng 12 2023

a: Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>OBAC là tứ giác nội tiếp đường tròn đường kính OA

=>O,B,A,C cùng thuộc đường tròn đường kính OA

Tâm của đường tròn là trung điểm của OA

b: Xét (O) có

AB,AC là tiếp tuyến

DO đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

Ta có: CB\(\perp\)BD

BC\(\perp\)OA

Do đó: OA//BD