y=(m-1)x+m(d)
xác định m là tiếp tuyến đường tròn tâm o bán kinh \(\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m=1\Leftrightarrow y=1\Leftrightarrow\) Khoảng cách từ đường thẳng tới Ox là \(1\ne\sqrt{2}\) (loại)
Với \(m=0\Leftrightarrow y=-x\) là đt đi qua gốc tọa độ, k/c từ đường thẳng tới Ox là \(0\ne\sqrt{2}\) (loại)
Với \(m\ne1;m\ne0\)
PT giao Ox: \(\left(m-1\right)x+m=0\Leftrightarrow x=\dfrac{m}{1-m}\Leftrightarrow A\left(\dfrac{m}{1-m};0\right)\Leftrightarrow OA=\left|\dfrac{m}{1-m}\right|\)
PT giao Oy: \(y=m\Leftrightarrow B\left(0;m\right)\Leftrightarrow OB=\left|m\right|\)
Để đường thẳng là tiếp tuyến của \(\left(O;\sqrt{2}\right)\) thì khoảng cách từ O đến đường thẳng bằng độ dài bán kính
Gọi H là hình chiếu từ O đến đường thẳng \(\Leftrightarrow OH=\sqrt{2}\)
Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{OH^2}\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2+\dfrac{1}{m^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{m^2-2m+2}{m^2}=\dfrac{1}{2}\\ \Leftrightarrow2m^2-4m+4=m^2\\ \Leftrightarrow m^2-4m+4=0\\ \Leftrightarrow m=2\)
Vậy m=2 thỏa đề
A B x y C D M O
a/
Xét tg vuông OAC và tg vuông OMC có
OA=OM=R
OC chung
=> tg OAC = tg OMC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)
Tương tự ta cũng có
tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)
\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)
b/
AB+BD nhỏ nhất khi \(M\equiv B\)
a, Vì MA ; MB là tiếp tuyến đường tròn (O) với A;B là tiếp điểm
=> ^OAM = ^OBM = 900
Xét tứ giác AMBO có :
^OAM + ^OBM = 1800
mà 2 góc này đối
Vậy tứ giác AMBO là tứ giác nt 1 đường tròn (1)
Xét tứ giác OHMB có :
^OHM + ^MBO = 1800
mà 2 góc này đối
Vậy tứ giác OHMB là tứ giác nt 1 đường tròn (2)
mà 2 tứ giác cùng chứa tam giác OBM (3)
Từ (1) ; (2) ; (3) vậy O;A;B;H;M cùng nằm trên 1 đường tròn