K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) uses crt;

var n,x,i:longint;

lt:real;

begin

clrscr;

write('Nhap co so n=');readln(n);

write('Nhap so mu x='); readln(x);

lt:=1;

for i:=1 to x do 

  lt:=lt*n;

writeln(n,'^',x,'=',lt:0:0);

readln;

end.

14 tháng 8 2023

2²ˣ⁻³ = 32

2²ˣ⁻³ = 2⁵

2x - 3 = 5

2x = 5 + 3

2x = 8

x = 8 : 2

x = 4

14 tháng 8 2023

x = 4

`@` `\text{Ans}`

`\downarrow`

`2^(2x-3)=32`

`=> 2^(2x-3)=2^5`

`=>2x -3=5`

`=> 2x=8`

`=>x=4` 

Vậy, `x=4.`

20 tháng 4 2018

a, 36:(x–5) =  2 2

(x–5) = 9

x = 14

b, [3.(70–x)+5]:2 = 46

[3.(70–x)+5] = 92

70–x = 29

x = 41

c, 450:[41–(2x–5)] =  3 2 .5

41–(2x–5) = 10

2x–5 = 31

2x = 36

x = 18

d, 230+[ 2 4 +(x–5)] = 315. 2018 0

16+(x–5) = 315–230

x–5 = 85–16

x = 69+5

x = 74

e,  2 x + 2 x + 1  = 48

2 x .(2+1) = 48

2 x = 16 =  2 4

x = 4

f,  3 x + 2 + 3 x  = 2430

3 x . 3 2 + 1 = 2430

3 x = 2430:10 = 243 =  3 5

x = 5

11 tháng 12 2019

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)

=> \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)=\frac{22}{45}\)

=> \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)=\frac{22}{45}\)

\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{22}{45}:\frac{1}{2}\)

\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{44}{45}\)

=> \(\frac{44}{45}x=\frac{44}{45}\)

=> x = 1

Vậy x = 1

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

1 tháng 11 2023

Câu 17

Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)

Ta có:

3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9

Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)

⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}

⇒ n ∈ {-8; -2; 0; 2; 4; 10}

Mà n là số tự nhiên

⇒ n ∈ {0; 2; 4; 10}

1 tháng 11 2023

Câu 22

A = 3 + 3² + 3³ + ... + 3²⁰²⁵

⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶

⇒ 2A = 3A - A

= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)

= 3²⁰²⁶ - 3

⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3

⇒ 2A + 3 = 3²⁰²⁶

Mà 2A + 3 = 3ⁿ

⇒ 3ⁿ = 3²⁰²⁶

⇒ n = 2026

24 tháng 10 2016

Chữ số tận cùng là 6

12 tháng 11 2016

chữ số tận cùng là 4 bạn ạ