K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Nếu x < - 2

=> |x - 1| = -(x - 1) = -x + 1;

|x + 2| = -(x + 2) = -x - 2;

|x - 3| = -(x - 3) = - x + 3

Khi đó |x - 1| + |x + 2| + |x - 3| = 14 

<=> - x + 1 - x - 2 - x + 3 = 14

<=> - 3x + 2 = 14

=> x = -4 (tm) 

Nếu -2 \(\le\)x\(\le\)1

=> |x - 1| = -(x - 1) = -x + 1;

|x + 2| = x + 2;

|x - 3| = -(x - 3) = - x + 3

Khi đó |x - 1| + |x + 2| + |x - 3| = 14

<=> -x + 1 + x + 2 - x + 3 = 14

=> - x = 8

=> x = - 8 (loại)

Nếu 1 < x < 3

=> |x - 1| = x - 1

|x + 2| = x + 2;

|x - 3| = -(x - 3) = - x + 3

Khi đó : |x - 1| + |x + 2| + |x - 3| = 14

<=> x - 1 + x + 2 - x + 3 = 14

=> x = 10 (loại) 

Nếu x > 3

=> |x - 1| = x - 1

|x + 2| = x + 2;

|x - 3| = x - 3

Khi đó : |x - 1| + |x + 2| + |x - 3| = 14

=> x - 1 + x + 2 + x - 3 = 14

=> 3x = 16

=> x = 16/3 (tm) 

Vậy \(x\in\left\{\frac{16}{3};-4\right\}\)

x . ( x + 1) . ( x + 2) . ( x + 3 ) = 24
<=> [ x . ( x + 3 ) ] . [ ( x + 1 ) . ( x + 2 ) ] = 24
<=> ( x2 + 3x ) . ( x2 + 3x + 2 ) = 24
Đặt x2 + 3x + 1 = y ta có :
( y - 1 ) . ( y + 1 ) = 24
<=> y2 - 1 - 24 = 0
<=> y2 - 25 = 0
<=> ( y - 5 ) . ( y + 5 ) = 0
Thay y = x2 + 3x + 1 vào phương trình ta có :
( x2 + 3x + 1 - 5 ) . ( x2 + 3x + 1 + 5 ) = 0
<=> ( x2 + 3x - 4 ) . ( x2 + 3x + 6 ) = 0
<=> ( x- x + 4x - 4 ) . ( x2 + 2 . x . 1,5 + 2,25 + 3,75 ) = 0
<=> ( x - 1 ) . ( x + 4 ) . [ ( x + 1,5)2 + 3,75 ] = 0
Suy ra x - 1 = 0 hoặc x + 4 =0 hoặc ( x + 1,5)2 + 3,75 = 0
Mà ( x + 1,5 )2 + 3,75 > 0 
Khi đó : 
+) x - 1 = 0 <=> x = 1 
+) x + 4 = 0<=> x = -4
Vậy tập nghiệm của phương trình là S = { 1 ; -4 }

17 tháng 3 2019

Nguyễn Khánh Huyền đây là dấu giá trị tuyệt đối,dấu các phép tính là dấu cộng chứ ko phải nhân nhé!Đối với dạng này cần lập bảng xét dấu để chia khoảng giá trị.

| x - 1 | + | x + 2 | + | x -3 | = 14 (1)

Với x < -2 thì (1) trở thành -3x + 2 = 14 tức là -3x = 12 hay x = -4 (thỏa mãn)

Với \(-2\le x< 1\) thì (1) trở thành: -x + 6  = 14 tức là x=-8 (loại)

Với \(1\le x< 3\),(1) trở thành x + 4 = 14 tức là x = 10  (loại)

Với \(x\ge3\);(1) trở thành: 3x - 2 = 14 tức là 3x = 16 hay x = 16/3 (thỏa mãn)

Vậy ....

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-\left(x-2\right)\left(x+1\right)+14=0\)

\(\Leftrightarrow x^2-4x+3-\left(x^2-x-2\right)+14=0\)

\(\Leftrightarrow x^2-4x+17-x^2+x+2=0\)

=>-3x+19=0

hay x=19/3(nhận)

26 tháng 2 2022

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

\(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-3}+\dfrac{14}{x^2-2x-3}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{14}{\left(x+1\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)+14}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow\left(x^2-4x+3\right)-\left(x^2-x-2\right)+14=0\\ \Leftrightarrow x^2-4x+3-x^2+x+2+14=0\)

\(\Leftrightarrow-3x+19=0\\ \Leftrightarrow x=\dfrac{19}{3}\left(tm\right)\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{19}{3}\right\}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {2{x^2} + x + 3}  = 1 - x\)

Bình phương hai vế của phương trình ta được:

\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)

Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x =  - 1;x =  - 2\) đều thỏa mãn

Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)

b) \(\sqrt {3{x^2} - 13x + 14}  = x - 3\)

Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)

Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn

Vậy phương trình vô nghiệm.

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)

21 tháng 3 2017

 AI ĐÓ VÍT DÙM BÀI VĂN TẢ ÔNG CHO TRIỆU !!!!!!!!!!! 

10 tháng 8 2020

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

10 tháng 8 2020

a) Lập bảng xét dấu

x              0           1              2

x        -     0      +    |       +      |       +

x - 1 -      |       -     0     +      |      +

x - 2 -    |          -    |     -         |      +

Xét các TH xảy ra

TH1: x \(\le\)0 => pt trở thành: -x - 2(1 - x) + 3(2 - x) = 4

<=> - x - 2 + 2x + 6 - 3x = 4 <=> -2x = 4 - 4 <=> -2x = 0 <=> x = 0 (tm)

TH2: 0 < x \(\le\)1 => pt trở thành: x - 2(1 - x) + 3(2 - x) = 4

<=> x - 2 + 2x + 6 - 3x = 4 <=> 4 = 4 (luôn đúng)

TH3: 1 < x \(\le\)2 => pt trở thành: x - 2(x - 1) + 3(2 - x) = 4

<=> x - 2x + 2 + 6 - 3x = 4 <=> -4x = 4 - 8 <=> -4x = -4 <=> x = 1 (ktm)

TH4: x > 2 => pt trở thành: x - 2(x - 1) + 3(x - 2)  = 4

<=> x - 2x + 2 + 3x - 6 = 4 <=> 2x = 4 + 4 <=> 2x = 8 <=> x = 4 (tm)

Vậy ....

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)  \(\sqrt {2{x^2} - 14}  = x - 1\quad \left( 1 \right)\)

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1.\)

\( \Rightarrow \) TXĐ: \(D = \left[ {1; + \infty } \right)\)

\(\begin{array}{l}\left( 1 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 14} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 14 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 15 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x =  - 5}\end{array}} \right.\end{array}\)

Nhận thấy \(x = 3\) thỏa mãn điều kiện

Vậy nghiệm của phương trình \(\left( 1 \right)\)  là: \(x = 3\)

b)  \(\sqrt { - {x^2} - 5x + 2}  = \sqrt {{x^2} - 2x - 3} \quad \left( 2 \right)\)

ĐK: \(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} - 5x + 2 \ge 0}\\{{x^2} - 2x - 3 \ge 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\frac{{ - 5 - \sqrt {33} }}{2} \le x \le  - 1.\)

\( \Rightarrow \) TXĐ: \(D = \left[ {\frac{{ - 5 - \sqrt {33} }}{2}; - 1} \right].\)

\(\begin{array}{l}\left( 2 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt { - {x^2} - 5x + 2} } \right)^2} = {\left( {\sqrt {{x^2} - 2x - 3} } \right)^2}\\ \Leftrightarrow \,\, - {x^2} - 5x + 2 = {x^2} - 2x - 3\\ \Leftrightarrow \,\,2{x^2} + 3x - 5 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - \frac{5}{2}}\end{array}} \right.\end{array}\)

Nhận thấy \(x =  - \frac{5}{2}\) thỏa mãn điều kiện

Vậy nghiệm của phương trình \(\left( 2 \right)\) là: \(x =  - \frac{5}{2}\)

26 tháng 9 2021

\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)

\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)

\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)