K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2020

S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27

= (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)

= (1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)

= (1 + 2)(1 + 22 + 24 + 26

= 3(1 + 22 + 24 + 26\(⋮3\)(ĐPCM)

26 tháng 12 2020

2S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 

S = (1+2 ) + (22 + 23 ) + (24 + 25 ) + (26 +27)

S = 3 + 22(1+2) + 24(1+2) + 26(1+2)

S = 3+22.3 + 24.3 + 26 .3 

S = 3(1+22 + 24 + 26 ) \(⋮\) 3

=> đpcm

7 tháng 11 2021

\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)=3+2^2.3+...+2^{10}.3=3\left(1+2^2+...+2^{10}\right)⋮3\)

7 tháng 11 2021

\(A=1+2+2^2+2^3+...+2^{10}+2^{11}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)

\(=3\left(1+2^2+...+2^{10}\right)\) ⋮3

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

15 tháng 11 2021

-48 x 72 + 36 x (-304)

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

24 tháng 10 2023

ko bt lm

 

29 tháng 9 2024

.................

 

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

29 tháng 10 2015

+A= 1+2+2^2 +...+2^196

A= (1+2)+(2^2 +2^3) +...+(2^195 +2^196)

A= 1.3+2^2 .3+...+2^195 .3

A= 3(1+...+2^195)=> A chia hết cho 3    

A=1+2+2^2+...+2^195+2^196 

A= (1+2+2^2)+...+(2^194 +2^195 +2^196)

A= 1.7 +...+2^194 .7

A=7(1+...+2^194)=> A chia hết cho 7

+ta có : 3^1993 luôn luôn lẻ ;2^157 luôn luôn chan

=> 3^1993 - 2^157 là 1 số lẻ 

=> ko chia hết cho 2