cho hàm số y=(m+1)x+3. tìm m để khoảng cách từ gốc tọa độ đến đồ thị hàm số có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )
Hàm số (1) có cực trị thì PT y ' = 0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nhiệm phân biệt
Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu B ( m + 1 ; - 2 m )
Ta có O A = 2 O B ⇔ m 2 + 6 m + 1 = 0
Ta có y’ = 3x2- 6mx + 3( m2-1).
Hàm số đã cho có cực trị thì phương trình y’ =0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m
Khi đó, điểm cực đại A( m-1; 2-2m) và điểm cực tiểu B( m+1; -2-2m)
Ta có
Tổng hai giá trị này là -6.
Chọn C.
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)
Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
Đặt: d: y = ( m+1 ) x + 3
+) TH1: m = -1
=> d: y = 3
=> Khoảng cách của gốc tọa độ tới d là: 3 (1)
+) Th2: m khác -1.
Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))
=> \(OA=\left|\frac{3}{m+1}\right|\)
Giao điểm của d với Oy là: \(B\left(0;3\right)\)
=> OB = 3.
Kẻ OH vuông với d tại H => AH là khoảng cách từ O tới d
Xét tam giác OAB vuông tại O. Có OH là đường cao:
=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)
=> \(OH< 3\)
=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)
Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.
len google bn oi