K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Lê Tài Bảo Châu Không cần (a+b+c)2 làm gì:) chỉ cần (a+b)2 là OK r:))

\(5x^2+8xy+5y^2+4x-4y+8=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)+\left(y^2-4y+4\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-2\right)^2+4\left(x+y\right)^2=0\)

\(VT=0\Leftrightarrow x=-2;y=2\)

16 tháng 12 2019

Ai làm hướng dẫn mình cách làm nhanh ra hđt \(\left(a+b+c\right)^2\)ko tự nhiên bị ngu 

4 tháng 10 2015

<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0

<=>(2x+2y)2+(x-1)2+(y+1)2=0

<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0

*(x-1)2=0

<=> x-1=0

<=>x=1

*(y+1)2

<=> y+1=0

<=> y=-1

Vậy x=1;y= -1

25 tháng 6 2017

5x^2 + 5y^2 +8xy -2x +2y +2 =0

4x^2 +8xy +4y^2 + x^2 -2x + 1 +y^2 +2y+1=0

(2x+2y)^2 +(x-1)^2 +(y+1)^2 =0

Vì ..... đều >=0 ( bạn tự viết tiếp )

Nên x=-y và x=1 và y= -1 (@_@)

Vậy (x;y)= (1;-1)

25 tháng 6 2017

mk k viết đề nha :

<=>4x2+8xy+4y2+x2-2x+1+y2+2y+1=0

<=>4(x+y)2+(x-1)2+(y+1)2=0       (1)

mà 4(x+y)2>=0,(x-1)2>=0,(y+1)2>=0

=> để (1) có nghiệm thì đòng thời x+y=0,x-1=0,y+1=0

=>x=1,y=-1

vậy x=1,y=-1

5 tháng 3 2020

Ta có : \(5x^2+8xy+5y^2+4x-4y+8=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x+2\right)^2+\left(y-2\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x+2y\right)^2=0\\\left(x+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=-2\\y=2\end{cases}}\) ( thỏa mãn )

Khi đó \(P=\left(-2+2\right)^{22}.\left(-2+1\right)^{12}+\left(2-1\right)^{2019}\)

\(=0+1=1\)

Vậy : \(P=1\) với x,y thỏa mãn đề.

ta được (4x^2+8xy+4y^2)+(x^2+4x+4)+(Y^2-4y+4)=0

(2x+2y)^2+(x+2)^2+(y-2)^2=0

(=)x=-2 và y=2

P=0-1+1=0

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$A=(9x^2-5x)+(5y^2+3y)$

$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$

$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$

$\geq \frac{-103}{90}$

Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$

$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 2:

a. 

$-A=4x^2+5y^2-8xy-10y-12$

$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$

$=(2x-2y)^2+(y-5)^2-37\geq -37$

$\Rightarrow A\leq 37$

Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$

$\Leftrightarrow x=y=5$

b.

$-B=3x^2+16y^2+8xy+5x-2$

$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$

$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$

$\geq \frac{-41}{8}$

$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$

$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$

7 tháng 12 2019

\(5x^2+8xy+5y^2+4x-4y+8=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)+\left(y^2-4y+4\right)+4x^2+4y^2+8xy=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-2\right)^2+4\left(x+y\right)^2=0\)

\(\Leftrightarrow x=-2;y=2\)

Thay vào P ta có:

\(P=\left(2-2\right)^8+\left(1-2\right)^{11}+\left(2-1\right)^{2018}\)

\(=0-1+1=0\)

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0

25 tháng 6 2017

a)\(x^2+5y^2-2xy+4y+1=0\)

\(x^2+2xy+y^2+4y^2+4y+1=0\)

\(\left(x+y\right)^2+\left(2y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\y=-\frac{1}{2}\left(1\right)\end{cases}}\)

      Từ (1) ta đc: x = 1/2

b)\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

27 tháng 12 2019

CÂU B Sao bạn làm được vậy

22 tháng 4 2017

=> x2-2x+1+y2+2y+1+4x2+8xy+4y2=0

=>(x-1)2+(y+1)2+(2x+2y)2=0

=>x-1=0 va y+1=0 va 2x+2y=0

=>x=1 va y=-1

16 tháng 12 2015

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì      \(\left(x+y\right)^2\ge0;\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0\)

Để    \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow y+1=0\Rightarrow y=-1\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

Vậy    \(x=1; y=-1\)