Chứng tỏ A=2+2^2+2^3+...+2^60chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+....+2^{60}\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+....+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2\cdot63+....+2^{65}\cdot63⋮21\)
\(A=2+2^2+2^3+2^4....+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2\cdot15+2^5\cdot15+...+2^{57}\cdot15⋮15\)
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
+A= 1+2+2^2 +...+2^196
A= (1+2)+(2^2 +2^3) +...+(2^195 +2^196)
A= 1.3+2^2 .3+...+2^195 .3
A= 3(1+...+2^195)=> A chia hết cho 3
A=1+2+2^2+...+2^195+2^196
A= (1+2+2^2)+...+(2^194 +2^195 +2^196)
A= 1.7 +...+2^194 .7
A=7(1+...+2^194)=> A chia hết cho 7
+ta có : 3^1993 luôn luôn lẻ ;2^157 luôn luôn chan
=> 3^1993 - 2^157 là 1 số lẻ
=> ko chia hết cho 2
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
Ta có: A= 2 + 22 + 23 + … + 260= (2 +22) + (23+ 24) + … + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + … + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + … + 259 x 3.
= 3 x ( 2 + 23 + … + 259).
Vì A = 3 x ( 2 + 23 + … + 259) nên A chia hết cho 3.
Ta có : A=2+22+23+...+260
=(2+22)+(23+24)+...+(259+260)
=2(1+2)+23(1+2)+...+259(1+2)
=2.3+23.3+...+259.3 chia hết cho 3
hay A chia hết cho 3
Vậy A chia hết cho 3.