K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

`a)(\sqrt{14}-3\sqrt{2})^2+6\sqrt{28}`

`=14-12\sqrt{7}+18+12\sqrt{7}=32`

`b)2\sqrt{20}-3\sqrt{20}+\sqrt{125}`

`=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}`

`=3\sqrt{5}`.

24 tháng 9 2023

a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2-6\sqrt{28}\)

\(=\left(\sqrt{14}\right)^2-2\cdot\sqrt{14}\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14-6\sqrt{28}+18+6\sqrt{28}\)

\(=14+18\)

\(=32\)

b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)

\(=2\cdot2\sqrt{5}-3\cdot2\sqrt{5}+5\sqrt{5}\)

\(=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}\)

\(=3\sqrt{5}\)

18 tháng 9 2021

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|2+\sqrt{2}\right|-\left|2-\sqrt{2}\right|\)

\(=2+\sqrt{2}-2+\sqrt{2}=2\sqrt{2}\)

7 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{18}+\sqrt{4.18}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

8 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

11 tháng 7 2021

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+2\sqrt{7}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)

11 tháng 7 2021

undefined

21 tháng 12 2023

Sửa đề: \(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)

\(=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\left|3-\sqrt{2}\right|+\left|\sqrt{2}-1\right|\)

\(=3-\sqrt{2}+\sqrt{2}-1\)

=3-1=2

NV
30 tháng 1 2022

Đặt \(x=\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}>0\)

\(x^2=\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}+\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}+2\sqrt{\dfrac{25-24}{25-6}}=\dfrac{74}{19}+\dfrac{2\sqrt{19}}{19}\)

\(\Rightarrow x^2=\dfrac{74+2\sqrt{19}}{19}\Rightarrow x=\sqrt{\dfrac{74+2\sqrt{19}}{19}}\)

Ko thể rút gọn thêm nữa (có thể trục căn thức ở mẫu)

\(A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)

\(=\sqrt{\sqrt{5}^5+\sqrt{2}^2+1^2+2\sqrt{2}.1+2\sqrt{2}.\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)

\(=\sqrt{5}+\sqrt{2}+1\)

13 tháng 10 2020

=√√55+√22+12+2√2.1+2√2.√5

=√(√5+√2+1)2

\(A=\sqrt{5-2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}\)

=0