K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo

a: góc ABC+góc ACB=180-60=120 độ

=>góc OBC+góc OCB=1/2*120=60 độ

góc BOC=180-60=120 độ

b: Kẻ OK là phân giác của góc BOC

=>góc BOK=góc COK=120/2=60 độ

góc NOB+góc BOC=180 độ(kề bù)

=>góc NOB=180-120=60 độ

=>góc MOC=góc NOB=60 độ

=>góc NOB=góc BOK=góc KOC=góc MOC

Xét ΔONB và ΔOKB có

góc NOB=góc KOB

OB chung

góc OBN=góc OBK

=>ΔONB=ΔOKB

=>ON=OK

Xét ΔOKC và ΔOMC có

góc KOC=góc MOC

OC chung

góc KCO=góc MCO

=>ΔOKC=ΔOMC

=>OK=OM

=>ON=OM

c: BN+CM

=BK+KC

=BC

19 tháng 3 2023

Bt đáp án chx

Giúp mk câu c

17 tháng 7 2016

A B C M N

Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.

\(\Rightarrow\)Góc NBC = Góc MCB

\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)

Xét \(\Delta BNC\)và \(\Delta CMB:\)

\(CN=BM\)( chứng minh trên )

Góc NBC = Góc MCB( chứng minh trên )

Chung cạnh BC

\(\Rightarrow\Delta BNC=\Delta CMB\)

Vậy \(\Delta BNC=\Delta CMB\)

17 tháng 7 2016

Chưa hỉu cho lắm bn giảng thêm đc không

Câu 1: 

Xét ΔABC có 

BM là đường phân giác ứng với cạnh AC

nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\left(1\right)\)

Xét ΔABC có

CN là đường phân giác ứng với cạnh AB

nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)

hay MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BNMC là hình thang cân