\(\sqrt{7-4\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(C=\sqrt{4+5}\)
\(C=3\)
a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
Nhân cả tử và mẫu với biểu thức liên hợp của mẫu (câu a mẫu cuối kì kì)
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\frac{1}{4}=\sqrt{3}-\frac{3}{4}\)
\(B=-\left(\sqrt{1}+\sqrt{2}-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-...+\sqrt{7}+\sqrt{8}-\sqrt{8}-\sqrt{9}\right)\)
\(B=-\left(\sqrt{1}-\sqrt{9}\right)=2\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
\(\sqrt{7-4\sqrt{3}}+\frac{1}{2-\sqrt{3}}.\)
\(\Leftrightarrow\sqrt{4-2.2.\sqrt{3}+3}+\frac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow\sqrt{\left(2+\sqrt{3}\right)^2}+\frac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)+\frac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow\frac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow\frac{4-3+1}{2-\sqrt{3}}=\frac{2}{2-\sqrt{3}}\)
\(\sqrt{7-4\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)
\(=\sqrt{\sqrt{3}^2-2.2.\sqrt{3}+2^2}+\frac{2}{2\left(2-\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{3}-2\right)^2}-\frac{1}{\sqrt{3}-2}\)
\(=\sqrt{3}-2-\frac{1}{\sqrt{3}-2}=\frac{\left(\sqrt{3}-2\right)^2-1}{\sqrt{3}-2}\)
\(=\frac{7-4\sqrt{3}-1}{\sqrt{3}-2}=\frac{6-4\sqrt{3}}{\sqrt{3}-2}\)