Cho tam giác LKM vuông tại K có góc M = 30 độ, ML = 6. Giải tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin R=\dfrac{PQ}{RQ}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow PQ=\dfrac{\sqrt{3}}{2}\cdot6=3\sqrt{3}\)
Áp dụng PTG: \(PR=\sqrt{RQ^2-PQ^2}=\sqrt{36-27}=3\)
a: \(\widehat{B}=60^0\)
AB=8cm
\(AC=4\sqrt{3}\left(cm\right)\)
a/ Xét tam giác ABM và tam giác EBM:
+ ^A = ^AEB ( = 90o)
+ BM chung
+ ^ABM = ^EBM ( do BM là phân giác ^B)
=> Tam giác ABM = Tam giác EBM (ch - gn)
b/ Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)
Mà ^C = 30o (gt)
=> ^B = 60o
Tam giác ABM = Tam giác EBM (cmt)
=> AB = EB (cặp cạnh tương ứng)
=> Tam giác ABE cân tại B
Lại có: ^B = 60o (cmt)
=> Tam giác ABE đều
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
b: Xét ΔADI vuông tại A và ΔKDC vuông tại K có
DA=DK
\(\widehat{ADI}=\widehat{KDC}\)
Do đó: ΔADI=ΔKDC
Suy ra: AI=KC
c: Ta có: BA+AI=BI
BK+KC=BC
mà BA=BK
và AI=KC
nên BI=BC
=>ΔBIC cân tại B
mà \(\widehat{IBC}=60^0\)
nên ΔBIC đều