K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(\left(\frac{2}{5}\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}=\left(\frac{2}{5}.\sqrt{4^2}+2\sqrt{\frac{4^2}{5^2}}\right):\frac{2}{\sqrt{4^2}}\)

\(=\left(\frac{2}{5}.4+2.\frac{4}{5}\right).2=\left(\frac{8}{5}+\frac{8}{5}\right).2=\frac{32}{5}\)

13 tháng 8 2016

\(\left(\frac{2}{5}.\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}\)

\(=\left(\frac{2}{5}.4+2.\frac{4}{5}\right):2.\frac{1}{4}\)

\(=\left(\frac{8}{5}+\frac{8}{5}\right):\frac{1}{2}\)

\(=\frac{16}{5}:\frac{1}{2}\)

\(=\frac{32}{5}\)

hihi ^...^ vui^_^

18 tháng 12 2016

Đặt \(a=\frac{1-\sqrt{5}}{2},b=\frac{1+\sqrt{5}}{2}\)

Ta có \(a+b=1,a-b=-\sqrt{5},ab=-1\)

Ta sẽ tính từ từ. Cụ thể

\(a^2+b^2=\left(a+b\right)^2-2ab=3\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)=-\sqrt{5}\)

\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=7\)

\(a^4-b^4=\left(a^2+b^2\right)\left(a^2-b^2\right)=-3\sqrt{5}\)

\(a^8+b^8=\left(a^4+b^4\right)^2-2\left(ab\right)^4=47\)

\(a^8-b^8=\left(a^4+b^4\right)\left(a^4-b^4\right)=-21\sqrt{5}\)

\(a^{16}-b^{16}=\left(a^8+b^8\right)\left(a^8-b^8\right)=-987\sqrt{5}\)

21 tháng 7 2018

ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)

pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)

Áp dụng BĐT Cauchy:

\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)

\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)

\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)

\(=4+2+10=16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0

7 tháng 9 2019

22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)

\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)

\(b,\left(\sqrt{1\frac{9}{16}-\sqrt{\frac{9}{16}}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}-\frac{3}{4}}\right):5\)

\(=\sqrt{\frac{13}{16}}:5\)

\(=\frac{\sqrt{13}}{4}:5\)

\(=\frac{\sqrt{13}}{20}\)