K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{m^2\left(m+2\right)+m+2}.\)

\(=\frac{3m^2\left(m+2\right)}{\left(m+2\right)\left(m^2+1\right)}=\frac{3m^2}{m^2+1}\)

Để \(A=3\Rightarrow\frac{3m^2}{m^2+1}=3\)

\(\Rightarrow3m^2=3\left(m^2+1\right)\)

\(\Rightarrow m^2=m^2+1\)

\(\Rightarrow0=1\)(vô lí )

Vậy không có giá trị nào của m để A = 3

6 tháng 12 2019

a) A xác định khi \(m^3+2m^2+m+2\ne0\)

\(\Leftrightarrow m^2\left(m+2\right)+\left(m+2\right)\ne0\)\(\Leftrightarrow\left(m^2+1\right)\left(m+2\right)\ne0\)

\(\Rightarrow m+2\ne0\)\(\Rightarrow m\ne-2\)\(\RightarrowĐKXĐ:x\ne-2\)

b) \(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{\left(m^2+1\right)\left(m+2\right)}=\frac{3m^2}{m^2+1}\)

c) \(A=3\)\(\Leftrightarrow\frac{3m^2}{m^2+1}=3\)\(\Leftrightarrow3m^2=3\left(m^2+1\right)\)

\(\Leftrightarrow3m^2=3m^2+3\)\(\Leftrightarrow3m^2-3m^2=3\)\(\Leftrightarrow0=3\)(vô lý)

Vậy không có giá trị m thoả mãn A=3

8 tháng 8 2023

\(a,dkxd:x\ge0,x\ne4\)

\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)

\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).

8 tháng 8 2023

a) Điều kiện xác định:

\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)

Vậy...

b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:

\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)

d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)

\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

Vậy x>4 thì B>0

Đề thiếu rồi bạn

2 tháng 1 2022

undefined

16 tháng 1 2022

\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)

b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)

  

\(a,x\ne\pm2\\ b,\\ =\dfrac{x^3-x\left(x+2\right)-2\left(x-2\right)}{x^2-4}\\ =\dfrac{x^3-x^2-2x-2x+4}{x^2-4}=\dfrac{x^3-4x-x^2+4}{x^2-4}\\ =\dfrac{x\left(x^2-4\right)-\left(x^2-4\right)}{x^2-4}=\dfrac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\\ =x-1\)

8 tháng 2 2022

:)))))))

a: ĐKXĐ: x^3-3x-2<>0

=>x^3-x-2x-2<>0

=>x(x-1)(x+1)-2(x+1)<>0

=>(x+1)(x-2)(x+1)<>0

=>x<>2 và x<>-1

b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)

c: 

A<1

=>A-1<0

\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)

=>x-2<0

=>x<2

11 tháng 1 2023

`a)ĐKXĐ:{(x > 0),(x \ne 4):}`

`b)` Với `x > 0,x \ne 4` có:

`A=[\sqrt{x}(\sqrt{x}+2)+\sqrt{x}(\sqrt{x}-2)]/[x-4].[x-4]/[\sqrt{4x}]`

`A=[x-2\sqrt{x}+x-2\sqrt{x}]/[2\sqrt{x}]`

`A=[2\sqrt{x}(\sqrt{x}-2)]/[2\sqrt{x}]=\sqrt{x}-2`

`c)` Với `x > 0,x \ne 4` có:

`A < 3 <=>\sqrt{x}-2 < 3<=>\sqrt{x} < 5<=>x < 25`

           Kết hợp đk

 `=>0 < x < 25 ,x \ne 4`

20 tháng 12 2022

a: DKXĐ: x^3-3x-2<>0

=>x^3-x-2x-2<>0

=>x(x-1)(x+1)-2(x+1)<>0

=>(x+1)(x^2-x-2)<>0

=>(x+1)(x-2)(x+1)<>0

=>\(x\notin\left\{2;-1\right\}\)

b: \(A=\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\dfrac{\left(x-1\right)^2}{x-2}\)

c: Để A<1 thì A-1<0

=>\(\dfrac{x^2-2x+1-x+2}{x-2}< 0\)

=>x-2<0

=>x<2

10 tháng 12 2019

1111111