K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

\(a,b,c>0;abc=1000\)

\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)

P đạt GTLN là 1/1000 khi \(a=b=c=10\)

Tham khảo:

Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1

*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)

*TH2: có 2 số lớn hơn 1

Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0

=> (a-1)(b-1)(c-1)<0 

=>abc+a+b+c-(ab+bc+ca)-1<0

<=>a+b+c<ab+bc+ca 

<=>a+b+c<abc/c+abc/a+abc/b 

Thay abc=1 ta được:

a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)

=>đpcm

16 tháng 7 2022
 

loading... Trường hợp 1: Giả sử ba số aabbcc đều lớn hơn 11 hoặc ba số aabbcc đều nhỏ hơn 11.

Khi đó a.b.c \ne 1
 
a.b.≠ 1 (trái với giả thiết).

loading... Trường hợp 2: Giả sử hai trong ba số aabbcc lớn hơn 1.

Không mất tính tổng quát, giả sử a > 11 và b > 11.

Vì a.b.c = 1a.b.1 nên c < 1c < 1 do đó:

     (a - 1).(b -1).(c - 1) < 0(− 1).(− 1).(− 10

\Leftrightarrow abc + a+b+c - ab - ac - ca - 1 < 0⇔ ab− ab − a− c− 0

\Leftrightarrow a+b+c - ab - ac - ca  < 0⇔ − ab − a− ca 0

\Leftrightarrow a+b+c < ab + ac + ca ⇔ ab aca 

⇔ c < \(\dfrac{abc}{c}\) + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)

⇔ c < \(\dfrac{1}{c}\) \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)

Vậy chỉ có một và chỉ một trong ba số aabbcc lớn hơn 11

17 tháng 3 2022

Câu 1:

Áp dụng BĐT Cô si cho 4 số dương, ta có:

\(a^4+b^4+c^4+d^4\ge4.^4\sqrt{\left(abcd\right)^4}=4abcd\)

Dấu "=" \(\Leftrightarrow a=b=c=d\)

Câu 2:

Gọi quãng đường AB là x km (x>0)

\(V_{tb}=\dfrac{S}{t}=\dfrac{x}{\dfrac{x}{\dfrac{2}{20}}+\dfrac{x}{\dfrac{2}{30}}}=\dfrac{x}{\dfrac{x}{40}+\dfrac{x}{60}}=\dfrac{x}{\dfrac{5x}{120}}=\dfrac{120x}{5x}=\dfrac{120}{5}=24\left(\text{km/h}\right)\)

Vậy ...

17 tháng 3 2022

cảm ơn ạ :D

 

5 tháng 10 2015

2a²/(a-b) + b²/(b-c) = (2a²-2b²)/(a-b) + (b²-c²)/(b-c) + 2b²/(a-b) + c²/(b-c)

                           = 2(a+b) + (b+c) + 2b²/(a-b) + c²/(b-c)

                           >2a +3b +c (vì a,b,c > 0)

1 tháng 2 2021

Ta có: a + b + c = 0

\(\Rightarrow\) (a + b + c)2 = 0

\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0

\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0

\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)

\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\)    (Vì a + b + c = 0)

Lại có: a2 + b2 + c2 = 2009

\(\Rightarrow\) (a2 + b2 + c2)2 = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5

Chúc bn học tốt!

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

13 tháng 1 2019

Điều cần chứng minh luôn đúng mà bạn -.-

14 tháng 1 2019

\(c\ge a,c\ge b\Rightarrow c\ge a+b\)(luôn đúng)

WTF!?!mấy cái dữ liện trên làm cảnh ak!?!

v:))