Tìm GTNN của B=x(x+1)(x^2+x-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
\(A=\left|x-\dfrac{1}{2}\right|\ge0\left(\forall x\right)\) dấu"=" xảy ra \(< =>x-\dfrac{1}{2}=0< =>x=\dfrac{1}{2}\)
\(B=\dfrac{3}{4}+|2-x|\ge\dfrac{3}{4}\left(\forall x\right)\) dấu"=" xảy ra \(< =>2-x=0< =>x=2\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
`a)A=-x^2+x+1`
`=-(x^2-x)+1`
`=-(x^2-2.x. 1/2+1/4-1/4)+1`
`=-(x-1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`
`b)B=x^2+3x+4`
`=x^2+2.x. 3/2+9/4+7/4`
`=(x-3/2)^2+7/4>=7/4`
Dấu "=" xảy ra khi `x-3/2=0<=>x=3/2`
`c)=x^2-11x+30`
`=x^2-2.x. 11/2+121/4-1/4`
`=(x-11/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x+1/4=0<=>x=-1/4`
B=(x^2+x)(x^2+x-4)
Đặt a= x^2+x-2
=> B=(a+2)(a-2)=a^2-4
mà a^2>=0 => B>=-4
Dấu = xảy ra <=> a=0<=> x^2+x-2=0
<=> x^2-x+2x-2=0<=> x(x-1)+2(x-1)=0<=>(x-1)(x+2)=0 <=> x=1 hoặc -2
Vậy GTNN của B=-4 tại x=1 hoặc -2