Trong mp (Oxy) cho 3 điểm \(A\left(2;4\right),B\left(1;-3\right),C\left(-2;2\right)\). Tìm tọa độ điểm E thuộc Oy sao cho ABCE là hình thang có 2 đáy BC và AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-x;1\right)\\\overrightarrow{MB}=\left(1-x;3\right)\\\overrightarrow{MC}=\left(-2-x;2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}=\left(-2x+4;5\right)\)
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|=\sqrt{\left(-2x+4\right)^2+5}\ge\sqrt{5}\)
Dấu "=" xảy ra khi \(-2x+4=0\Leftrightarrow x=2\Rightarrow M\left(2;0\right)\)
\(\overrightarrow{AB}=\left(6;-2\right)\Rightarrow AB=2\sqrt{10}\)
Gọi I là trung điểm AB \(\Rightarrow I\left(1;4\right)\)
ĐƯờng tròn (C) nhận I là tâm và có bán kính \(R=\dfrac{AB}{2}=\sqrt{10}\)
Phương trình: \(\left(x-1\right)^2+\left(y-4\right)^2=10\)
Sửa đề: C(2;2)
\(\overrightarrow{AB}=\left(6;-10\right)\)
\(\overrightarrow{DC}=\left(-3;5\right)\)
Vì vecto AB=-2vecto DC
nên AB//DC
=>ABCD là hình thang
D thuộc trục Ox nên D(x;0)
\(DA=\sqrt{\left(-1-x\right)^2+\left(4-0\right)^2}=\sqrt{\left(x+1\right)^2+16}\)
\(DB=\sqrt{\left(0-x\right)^2+\left(-2-0\right)^2}=\sqrt{x^2+4}\)
Để ΔDAB cân tại D thì DA=DB
=>\(\left(x+1\right)^2+16=x^2+4\)
=>\(x^2+2x+1+16=x^2+4\)
=>2x+17=4
=>2x=4-17=-13
=>\(x=-\dfrac{13}{2}\)
Vậy: \(D\left(-\dfrac{13}{2};0\right)\)
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)
Lời giải:
Do $E\in Oy$ nên đặt tọa độ điểm $E(0,a)$
Từ ĐKĐB: \(\overrightarrow{BC}=(-3,5)\); \(\overrightarrow{AE}=(-2,a-4)\)
Để $ABCE$ là hình thang có 2 đáy $BC$ và $AE$ thì \(\overrightarrow{BC}, \overrightarrow{AE}\) là 2 vecto cùng phương,cùng hướng.
Điều này xảy ra khi tồn tại $k>0$ sao cho:
$\overrightarrow{BC}=k\overrightarrow{AE}$
$\Leftrightarrow (-3,5)=k(-2,a-4)$
\(\Leftrightarrow \left\{\begin{matrix} -2k=-3\\ k(a-4)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=\frac{3}{2}\\ k(a-4)=5\end{matrix}\right.\Rightarrow a-4=\frac{10}{3}\Rightarrow a=\frac{22}{3}\)
Vậy $E(0, \frac{22}{3})$
Gọi tọa độ điểm \(E\) \(\left(0,a\right)\)
BC và AE là hai đáy hình thang:
\(\overrightarrow{AE}=k.\overrightarrow{BC}\)
\(\Rightarrow\left(-2,a-4\right)=k\left(-3,5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-2=k.\left(-3\right)\\a-4=k.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\frac{2}{3}\\a=4+k.5\end{matrix}\right.\) \(\Rightarrow a=\frac{22}{3}\) \(\Rightarrow E\left(0,\frac{22}{3}\right)\)