K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Do $E\in Oy$ nên đặt tọa độ điểm $E(0,a)$

Từ ĐKĐB: \(\overrightarrow{BC}=(-3,5)\); \(\overrightarrow{AE}=(-2,a-4)\)

Để $ABCE$ là hình thang có 2 đáy $BC$ và $AE$ thì \(\overrightarrow{BC}, \overrightarrow{AE}\) là 2 vecto cùng phương,cùng hướng.

Điều này xảy ra khi tồn tại $k>0$ sao cho:

$\overrightarrow{BC}=k\overrightarrow{AE}$

$\Leftrightarrow (-3,5)=k(-2,a-4)$

\(\Leftrightarrow \left\{\begin{matrix} -2k=-3\\ k(a-4)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=\frac{3}{2}\\ k(a-4)=5\end{matrix}\right.\Rightarrow a-4=\frac{10}{3}\Rightarrow a=\frac{22}{3}\)

Vậy $E(0, \frac{22}{3})$

1 tháng 12 2019

Gọi tọa độ điểm \(E\) \(\left(0,a\right)\)

BC và AE là hai đáy hình thang:

\(\overrightarrow{AE}=k.\overrightarrow{BC}\)

\(\Rightarrow\left(-2,a-4\right)=k\left(-3,5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-2=k.\left(-3\right)\\a-4=k.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\frac{2}{3}\\a=4+k.5\end{matrix}\right.\) \(\Rightarrow a=\frac{22}{3}\) \(\Rightarrow E\left(0,\frac{22}{3}\right)\)

7 tháng 4 2021

Câu này đề Hà Tĩnh 2016 - 2017.

Tham khảo:

Đáp án và đề thi HSG toán 10 sở GD&ĐT Hà Tĩnh 2016-2017

NV
23 tháng 12 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)

NV
24 tháng 12 2020

Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-x;1\right)\\\overrightarrow{MB}=\left(1-x;3\right)\\\overrightarrow{MC}=\left(-2-x;2\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}=\left(-2x+4;5\right)\)

\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|=\sqrt{\left(-2x+4\right)^2+5}\ge\sqrt{5}\)

Dấu "=" xảy ra khi \(-2x+4=0\Leftrightarrow x=2\Rightarrow M\left(2;0\right)\)

5 tháng 12 2021

Tham khảo

 
5 tháng 12 2021

là sao z bn

 

NV
11 tháng 5 2021

\(\overrightarrow{AB}=\left(6;-2\right)\Rightarrow AB=2\sqrt{10}\)

Gọi I là trung điểm AB \(\Rightarrow I\left(1;4\right)\)

ĐƯờng tròn (C) nhận I là tâm và có bán kính \(R=\dfrac{AB}{2}=\sqrt{10}\)

Phương trình: \(\left(x-1\right)^2+\left(y-4\right)^2=10\)

27 tháng 10 2018

Thử xem lại đề

30 tháng 10 2022

Sửa đề: C(2;2)

\(\overrightarrow{AB}=\left(6;-10\right)\)

\(\overrightarrow{DC}=\left(-3;5\right)\)

Vì vecto AB=-2vecto DC

nên AB//DC

=>ABCD là hình thang

22 tháng 12 2023

D thuộc trục Ox nên D(x;0)

\(DA=\sqrt{\left(-1-x\right)^2+\left(4-0\right)^2}=\sqrt{\left(x+1\right)^2+16}\)

\(DB=\sqrt{\left(0-x\right)^2+\left(-2-0\right)^2}=\sqrt{x^2+4}\)

Để ΔDAB cân tại D thì DA=DB

=>\(\left(x+1\right)^2+16=x^2+4\)

=>\(x^2+2x+1+16=x^2+4\)

=>2x+17=4

=>2x=4-17=-13

=>\(x=-\dfrac{13}{2}\)

Vậy: \(D\left(-\dfrac{13}{2};0\right)\)

17 tháng 4 2018

NV
8 tháng 6 2020

Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d

Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)

\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d

Phương trình d' qua A và vuông góc d có dạng:

\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)

D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)

C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)

\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:

\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)