\(\frac{3}{2x}+\frac{3x-3}{2x-1}+\frac{2x^2+1}{4x^2-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}\)
\(=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-6x^2+3x+6x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-2x+1}{2x\left(x-1\right)}\)
\(=-\frac{1}{2x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ne0;x\ne\frac{1}{2}\)
\(\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{3-3x}{2x-1}\)
\(=\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{6x-6x^2}{4x^2-2x}\)
\(=\frac{8x^2-6x+1}{4x^2-2x}+\frac{3}{2x}=\frac{8\left(x-\frac{1}{2}\right)\left(x-\frac{1}{4}\right)}{4x\left(x-\frac{1}{2}\right)}+\frac{3}{2x}\)
\(=\frac{8x-2}{4x}+\frac{3}{2x}=\frac{8x-2}{4x}+\frac{6}{4x}=\frac{8x-2+6}{4x}\)
\(=\frac{8x+4}{4x}=1+\frac{4x+4}{4x}=2+\frac{4}{4x}=2+\frac{1}{x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)
\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)
ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)
\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)
\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)
Thỏa mãn ĐK
Các trường hợp khác làm tương tự
\(\frac{3}{2x}+\frac{3x-3}{2x-1}+\frac{2x^2+1}{4x^2-2x}\)
\(=\frac{3}{2x}+\frac{3x-3}{2x-1}+\frac{2x^2+1}{2x\left(2x-1\right)}\)
\(=\frac{3\left(2x-1\right)+2x\left(3x-3\right)+2x^2+1}{2x\left(2x-1\right)}\)
\(=\frac{6x-3+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}\)
\(=\frac{8x^2-2}{2x\left(2x-1\right)}=\frac{2\left(4x^2-1\right)}{2x\left(2x-1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)}\)
\(=\frac{2x+1}{x}\)