(-1/3)2 .1/4+7/11.(1/3)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{19}{20}=\frac{1}{20}\)
b) \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
=> \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
=> \(A=2-\frac{1}{2^{2012}}\)
c) \(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}.\frac{4}{21}=11\)
d.e) ktra lại đề
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`4/7+4`
`=4/7+4/1`
`=4/7+28/7`
`=32/7`
__
`3+6/11`
`=33/11+6/11`
`=39/11`
__
`3-5/7`
`=3/1-5/7`
`=21/7-5/7`
`=16/7`
__
`21/9-2`
`=21/9-18/9`
`=3/9`
`=1/3`
__
`15/24+2`
`=15/24+48/24`
`=63/24`
`=21/16`
__
`63/45-20/25`
`=63/45-4/5`
`=63/45-36/45`
`=27/45`
`=9/15`
__
`3/4-2/8`
`=3/4-1/4`
`=2/4`
__
`6/7-5/8`
`=48/56-35/56`
`=13/56`
__
`37/45-5/9`
`=37/45-25/45`
`=12/45`
`=4/15`
__
`46/39-11/13`
`=46/39-33/39`
`=13/39`
`=1/2`
__
`5/12+3/4+1/3`
`=5/12+9/12+4/12`
`=14/12+4/12`
`=18/12`
`=3/2`
__
`1/2+3/7+11/14`
`=7/14+6/14+11/14`
`=13/14+11/14`
`=24/14`
`=12/7`
__
`7/10-(1/5+1/4)`
`=7/10-(4/20+5/20)`
`=7/10-9/20`
`=14/20-9/20`
`=5/20`
`=1/4`
__
`15/4-2/3-3/4`
`=(15/4-3/4)-2/3`
`=12/4-2/3`
`=3-2/3`
`=9/3-2/3`
`=7/3`
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: \(x=\dfrac{2}{3}:\dfrac{3}{5}=\dfrac{2}{3}\cdot\dfrac{5}{3}=\dfrac{10}{9}\)
b: \(x=\dfrac{17}{8}:\dfrac{7}{17}=\dfrac{17}{8}\cdot\dfrac{17}{7}=\dfrac{289}{56}\)
c: \(x=-\dfrac{3}{4}:\dfrac{7}{12}=\dfrac{-3}{4}\cdot\dfrac{12}{7}=\dfrac{-63}{28}=-\dfrac{9}{4}\)
d: \(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{4}\)
hay \(x=\dfrac{1}{4}:\dfrac{1}{6}=\dfrac{3}{2}\)
e: \(\Leftrightarrow\dfrac{1}{2}:x=-4-\dfrac{1}{3}=-\dfrac{17}{3}\)
hay \(x=-\dfrac{1}{2}:\dfrac{17}{3}=\dfrac{-3}{34}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(B=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{10}\right)=2.\frac{9}{10}\)
\(B=\frac{9}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`@` `\text {Ans}`
`\downarrow`
`a.`
`A=(1/2-7/13-1/3)+(-6/13+1/2+1 1/3)`
`= 1/2 - 7/13 - 1/3 - 6/13 + 1/2 + 1 1/3`
`= (1/2 + 1/2) + (-7/13 - 6/13) + (-1/3 + 1 1/3) `
`= 1 - 1 + 1`
`= 1`
`b.`
`B=0,75+2/5+(1/9-1 1/2+5/4)`
`= 3/4 + 2/5 + 1/9 - 3/2 + 5/4`
`= (3/4+5/4)+ 1/9 + 2/5 - 3/2`
`= 2 + 1/9 - 11/10`
`= 19/9 - 11/10`
`= 91/90`
`c.`
`(-5/9).3/11+(-13/18).3/11`
`= 3/11*[(-5/9) + (-13/18)]`
`= 3/11*(-23/18)`
`= -23/66`
`d.`
`(-2/3).3/11+(-16/9).3/11`
`= 3/11* [(-2/3) + (-16/9)]`
`= 3/11*(-22/9)`
`= -2/3`
`e.`
`(-1/4).(-2/13)-7/24.(-2/13)`
`= (-2/13)*(-1/4-7/24)`
`= (-2/13)*(-13/24)`
`= 1/12`
`f.`
`(-1/27).3/7+(5/9).(-3/7)`
`= 3/7*(-1/27 - 5/9)`
`= 3/7*(-16/27)`
`= -16/63`
`g.`
`(-1/5+3/7):2/11+(-4/5+4/7):2/11`
`=[(-1/5+3/7)+(-4/5+4/7)] \div 2/11`
`= (-1/5+3/7 - 4/5 + 4/7) \div 2/11`
`= [(-1/5-4/5)+(3/7+4/7)] \div 2/11`
`= (-1+1) \div 2/11`
`= 0 \div 2/11 = 0`
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)
d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
=\(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)
=\(\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)
=\(\left(\dfrac{5}{10}+\dfrac{8}{10}\right)+0\)
=\(\dfrac{13}{10}\)
\(-\dfrac{7}{25}.\dfrac{11}{13}+\left(-\dfrac{7}{25}\right).\dfrac{2}{13}-\dfrac{18}{25}\)
=\(-\dfrac{7}{25}.\cdot\left(\dfrac{11}{13}+\dfrac{2}{13}\right)-\dfrac{18}{25}\)
=\(-\dfrac{7}{25}.1-\dfrac{18}{25}\)
=\(-\dfrac{7}{25}-\dfrac{18}{25}\)
=\(-\dfrac{25}{25}\) = \(-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
(-1/3)2 . 1/4 + 7/11 . (1/3)2
= 1/9.1/4 + 7/11.1/9
=1/9.(1/4+7/11)
=1/9.(11/44+28/44)
=1/9.39/44
=13/132
hok tốt