(\(\frac{x+y}{x-2y}\)+\(\frac{3y}{2y-x}\)-3xy).\(\frac{x+1}{3xy-1}\)+\(\frac{x^2}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

a: \(\frac{x+1}{x-y}+\frac{x-1}{x-y}+\frac{x+3}{x-y}\)
\(=\frac{x+1+x-1+x+3}{x-y}=\frac{3x+3}{x-y}\)
b: \(\frac{5xy^2-3z}{3xy}+\frac{4x^2y+3z}{3xy}=\frac{5xy^2-3z+4x^2y+3z}{3xy}\)
\(=\frac{5xy^2+4x^2y}{3xy}=\frac{xy\left(5y+4x\right)}{3xy}=\frac{4x+5y}{3}\)
c: \(\frac{x+9}{x^2-9}-\frac{3}{x^2+3x}\)
\(=\frac{x+9}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+9\right)-3\left(x-3\right)}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2+9x-3x+9}{x\left(x+3\right)\left(x-3\right)}\)
\(=\frac{x^2+6x+9}{x\left(x+3\right)\left(x-3\right)}=\frac{\left(x+3\right)^2}{x\left(x+3\right)\left(x-3\right)}=\frac{x+3}{x\left(x-3\right)}\)
d: \(\frac{x}{5x+5}-\frac{x-10}{10x-10}\)
\(=\frac{x}{5\left(x+1\right)}-\frac{x-10}{10\left(x-1\right)}\)
\(=\frac{2x\left(x-1\right)-\left(x-10\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}=\frac{2x^2-2x-\left(x^2+x-10x-10\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^2-2x-x^2+9x+10}{10\left(x-1\right)\left(x+1\right)}=\frac{x^2+7x+10}{10\left(x-1\right)\left(x+1\right)}\)

\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)
\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)

Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh