1/5x^2 (5x^3-x-25)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=\dfrac{15x+25-25x+x^2}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\\ b,=\dfrac{x^2-x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2+x-6}{x^2+x-6}=1\)
\(a,\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{25-x}{5\left(5-x\right)}\)
\(=\dfrac{-3x-5}{x\left(5-x\right)}+\dfrac{25-x}{5\left(5-x\right)}\)
\(=\dfrac{5\left(-3x-5\right)}{5x\left(5-x\right)}+\dfrac{x\left(25-x\right)}{5x\left(5-x\right)}\)
\(=\dfrac{-15x-25+25x-x^2}{5x\left(5-x\right)}\)
\(=\dfrac{10x-25-x^2}{5x\left(5-x\right)}\)
\(=\dfrac{-\left(5-x\right)^2}{5x\left(5-x\right)}\)
\(=\dfrac{-5+x}{5x}\)
\(b,\dfrac{x+1}{x+3}+\dfrac{x-7}{x^2+x-6}+\dfrac{1}{x-2}\)
\(=\dfrac{x+1}{x+3}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{1}{x-2}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-2x+x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2+x-6}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2+x-6}{x^2-2x+3x-6}\)
\(=\dfrac{x^2+x-6}{x^2+x-6}\)
\(=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)
\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)
a: =>(x+2-3)(x+2+3)=0
=>(x-1)(x+5)=0
=>x=1 hoặc x=-5
b: =>(x-1)^2=25
=>x-1=5 hoặc x-1=-5
=>x=-4 hoặc x=6
c: =>25x^2+10x+1-25x^2+9=30
=>10x+10=30
=>x+1=3
=>x=2
d: =>x^3-1-x(x^2-4)=5
=>x^3-1-x^3+4x=5
=>4x=6
=>x=3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
a, Ta có : \(x^2-10x=-25\)
=> \(x^2-10x+25=0\)
=> \(\left(x-5\right)^2=0\)
=> \(x-5=0\)
=> \(x=5\)
Vậy phương trình có nghiệm là x = 5 .
b, Ta có : \(5x\left(x-1\right)=x-1\)
=> \(5x\left(x-1\right)-x+1=0\)
=> \(5x\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(5x-1\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)
c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)
=> \(2\left(x+5\right)-x\left(x+5\right)=0\)
=> \(\left(2-x\right)\left(x+5\right)=0\)
=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 2, x = -5 .
d, Ta có : \(x^2-2x-3=0\)
=> \(x^2-3x+x-3=0\)
=> \(x\left(x+1\right)-3\left(x+1\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 3, x = -1 .
e, Ta có : \(2x^2+5x-3=0\)
=> \(2x^2+6x-x-3=0\)
=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)
=> \(\left(x+3\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)
\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
Vậy nghiệm của phương trình trên là \(5\)
\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)
d, ĐKXĐ:\(x\ne-2,x\ne3\)
\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(e,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{9}{8}\)
\(f,25\left(x+3\right)^2+ \left(1-5x\right)\left(1+5x\right)=8\)
\(\Leftrightarrow25\left(x^2+6x+9\right)+\left(1-25x^2\right)=8\)
\(\Leftrightarrow25x^2+150x+225+1-25x^2=8\)
\(\Leftrightarrow150x+226=8\)
\(\Leftrightarrow150x=-218\)
\(\Leftrightarrow x=-\dfrac{109}{75}\)
\(g,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Leftrightarrow9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(\Leftrightarrow9x^2+18x+9-9x^2+4=10\)
\(\Leftrightarrow18x+13=10\)
\(\Leftrightarrow18x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
\(h,-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+\left(4x^2-1\right)=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x-5=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
#\(Toru\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=>(2x+3).(10x+2)=(5x+2).(4x+5)
=>(2x.10x)+(2x.2)+(3.10x)+(3.2)=(5x.4x)+(5x.5)+(2.4x)+(2.5)
=>20x2+4x+30x+6=20x2+25x+8x+10
=>20x2-20x2+4x-8x+30x-25x=10-6
=>0+4x-8x+30x-25x=4
=>-4x+30x-25x=4
=>26x-25x=4
=>x=4
B)=>(3x-1).(5x-34)=(40-5x).(25-3x)
=>15x2-102x-5x+34=1000-120x-125x+15x2
=>15x2-107x+34=1000-245x+15x2
=>15x2-15x2-107x+245x=1000-34
=>0-107x+245x=966
=>138x=966
=>x=7
A,=>(2x+3).(10x+2)=(5x+2).(4x+5)
=>(2x.10x)+(2x.2)+(3.10x)+(3.2)=(5x.4x)+(5x.5)+(2.4x)+(2.5)
=>20x2+4x+30x+6=20x2+25x+8x+10
=>20x2-20x2+4x-8x+30x-25x=10-6
=>0+4x-8x+30x-25x=4
=>-4x+30x-25x=4
=>26x-25x=4
=>x=4
\(\left(\dfrac{1}{5x}\right)^2\left(5x^3-x-25\right)\)
= \(\dfrac{1}{25x^2}.\left(5x^3-x-25\right)\)
= \(\dfrac{x}{5}-\dfrac{1}{25x}-\dfrac{1}{x^2}\)