cho a/b=b/c=c/a và a+b+c khác 0 tính P=a49 . b51/c100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c=0
=>a+b=-c;b+c=-a;a+c=-b
Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)
anh đi anh nhớ quê nha
nhớ canh rau muống nhớ cà dầm tương
nhớ thằng đẩy bố xuống mương
bố mà bắt được bố tương vỡ mồm
a, Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
b, Áp dung TCDTSBN ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)
ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b ; a = c ; c = a => a=b=c
b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = z; z = x => x = y = z
\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c,
Theo đề bài:
ac = bb <=> bb/a = c
ab = cc <=> ab/c = c
=> bb/a = ab/c
=> bbc = aab
=> bc = ab
Mà cc = ab => cc = bc => b = c
ac/b = b
cc/a = b
=> ac/b = cc/a
=> aac = bcc
=> aa = bc
Mà bc = cc => aa = cc => a = c
=> a = b = c
\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
ta có a/b = b/c =c/a
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/b =b/c = c/a = a+b+c / a+b+c =1 ( do a+b+c khác 0)
=> a =b , b=c , c=a
mà a= 2015 =>a=b=c =2015
Sửa đề: cho a/b = b/c = c/a và a+b+c khác. Biết a=2018 . Tính b và c
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
Do a = 2018 => b = c = 2018
Vậy b = c = 2018
Vì a + b + c ≠ 0 , áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=1.b=b\\b=1.c=c\\c=1.a=a\end{cases}}\Rightarrow a=b=c\)
Khi đó \(P=\frac{a^{49}.b^{51}}{c^{100}}=\frac{c^{49}.c^{51}}{c^{100}}=\frac{c^{100}}{c^{100}}=1\)( do a = b = c )
Vậy P = 1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\)\(a=b;b=c;c=a\Leftrightarrow a=b=c\)
Suy ra:
\(\frac{a^{49}.b^{51}}{c^{100}}=\frac{a^{49}.a^{51}}{a^{100}}=\frac{a^{100}}{a^{100}}=1\)
Vậy: \(P=1\)