K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

đk: x≥-1

pt <=> \(x\left(x+1\right)+12\sqrt{x+1}-36=0\)

đặt \(\sqrt{x+1}=t\left(t\ge0\right)\Rightarrow x=t^2-1\)

pt có dạng: \(\left(t^2-1\right)t^2+12t-36=0\)

\(\Leftrightarrow t^4-t^2+12t-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+3\right)\left(t^2-t+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\t+3=0\\t^2-t+6=0\left(1\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-3\left(loai\right)\end{matrix}\right.\)

Dễ dàng cm được pt (1) vô nghiệm vì \(\Delta=1-24=-23< 0\)

Với t = 2 => \(\sqrt{x+1}=2\Leftrightarrow x=3\)

vậy x = 3 là nghiệm của pt

NV
21 tháng 7 2021

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

NV
21 tháng 7 2021

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

15 tháng 12 2018

\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)

\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)

\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)

\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)

25 tháng 7 2017

a)\(x^2+x+12\sqrt{x+1}=36\)

\(pt\Leftrightarrow x^2+x-12+12\sqrt{x+1}-24=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x+1\right)-576}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x-3\right)}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\frac{144}{12\sqrt{x+1}+24}\right)=0\)

Dễ thấy: \(x+4+\frac{144}{12\sqrt{x+1}+24}>0\forall x\ge-1\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

b)\(x+\sqrt{x-2}=2\sqrt{x-1}\)

\(pt\Leftrightarrow x-2+\sqrt{x-2}=2\sqrt{x-1}-2\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}=2\left(\sqrt{x-1}-1\right)\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-1-1}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(1+\frac{1}{\sqrt{x-2}}-\frac{2}{\sqrt{x-1}+1}\right)=0\)

Suy ra x-2=0=>x=2

c)Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x+3}+\sqrt{1-x}\)

\(\ge\sqrt{x+3+1-x}=\sqrt{4}=2=VP\)

Xảy ra khi \(\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)

9 tháng 7 2018

1) ĐK: \(x\ge-1\)

\(PT\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12.\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\Leftrightarrow x=3\text{ hoặc }\frac{12}{\sqrt{x+1}+2}+x+4=0\) (*)

VT của (*) luôn dương với \(x\ge-1\)

=> x = 3

NV
8 tháng 2 2020

ĐKXĐ:...

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

24 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\left(a>0\right)\\\sqrt{y-1}=b\left(b>0\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{36}{a}+\dfrac{4}{b}=28-4a-b\)

\(\Leftrightarrow\left(\dfrac{36}{a}+4a\right)+\left(\dfrac{4}{b}+b\right)=28\)

\(VT\ge2\sqrt{\dfrac{36}{a}\times4a}+2\sqrt{\dfrac{4}{b}\times b}=28\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{36}{a}=4a\\\dfrac{4}{b}=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\left(a,b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{y-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\) (n)

Vậy . . . >3<

22 tháng 6 2021

Điều kiện:`x>=2`

Ta có:

`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`

`=8/(\sqrt{x+6}+sqrt{x-2})`

`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`

`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`

`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`

`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`

`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`

`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`

Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`

`=>sqrt{x+6}-1>=2sqrt2-1>0`

`<=>sqrt{x-2}=1`

`<=>x=3(tm)`

Vậy `S={3}`

3 tháng 1 2017

ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)

PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)

\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)

Tới đây bạn tự giải được rồi :)

2 tháng 9 2017

Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath

tham khảo nhé 

bn cần đoa