tìm min max /2x+5/+/2x-7/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x^2-2x+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
2/ \(4x^2+2x+9\)
\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)
\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)
có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)
\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)
với \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)
\(A=\left(2x^2+3\right)-7\)
\(A=2x^2+3-7\)
\(A=2x^2-4\ge-4\)
vậy Min A=-4 khi và chỉ khi x=0
\(y=2sin^2x+3sinx.cosx+cos^2x\)
\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)
\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)
Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)
\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)
\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)
\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)
Không có max
`a)sqrt{x^2-2x+5}`
`=sqrt{x^2-2x+1+4}`
`=sqrt{(x-1)^2+4}`
Vì `(x-1)^2>=0`
`=>(x-1)^2+4>=4`
`=>sqrt{(x-1)^2+4}>=sqrt4=2`
Dấu "=" xảy ra khi `x=1.`
`b)2+sqrt{x^2-4x+5}`
`=2+sqrt{x^2-4x+4+1}`
`=2+sqrt{(x-2)^2+1}`
Vì `(x-2)^2>=0`
`=>(x-2)^2+1>=1`
`=>sqrt{(x-2)^2+1}>=1`
`=>sqrt{(x-2)^2+1}+2>=3`
Dấu "=" xảy ra khi `x=2`
\(2x^2-4xy+4y^2+2x+5=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4=\left(x-2y\right)^2+\left(x+1\right)^2+4\)
\(\left(x-2y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\)
vậy max của biểu thức trên = 4
Giá trị tuyệt đối à
Đặt A = |2x + 5| + |2x - 7|
=>A = |2x + 5| + |7 - 2x| \(\ge\)|2x + 5 + 7 - 2x| = |12| = 12
Dấu "=" xảy ra <=> (2x + 5)(7 - 2x) \(\ge\)0
=> -5/2 \(\le\)x \(\le\)7/2
Vậy MinA = 12 <=> -5/2 \(\le\)x \(\le\)7/2