Tìm 3 số hữu tỉ dương sao cho \(a+\frac{1}{a},b+\frac{1}{b},c+\frac{1}{c}\)là 3 số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
2. Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)
= \(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
= \(3^n.10-2^{n-1}.10\)
= \(\left(3^n-2^{n-1}\right).10⋮10\forall n\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}<\frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(1<\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}<2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\notin Z\)
\(\Rightarrowđpcm\)
Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)
\(b+\frac{1}{b}=y\inℕ^∗\)
\(c+\frac{1}{c}=z\inℕ^∗\)
Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.
Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ